科目: 来源: 题型:
【题目】如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面 BEF 与平面ABC 所成的二面角的余弦值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱
,底面ABCD为直角梯形,其中
,O为AD中点.
![]()
(1)求证:PO⊥平面ABCD;
(2)求直线BD与平面PAB所成角的正弦值;
(3)线段AD上是否存在点
,使得它到平面PCD的距离为
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
其中P,M是非空数集,且P∩M=,设f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);
(II)是否存在实数a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(M)=[﹣3,2a﹣3]?若存在,请求出满足条件的实数a;若不存在,请说明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是单调递增函数,求集合P,M.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x|x﹣a|的定义域为D,其中a为常数;
(1)若D=R,且f(x)是奇函数,求a的值;
(2)若a≤﹣1,D=[﹣1,0],函数f(x)的最小值是g(a),求g(a)的最大值;
(3)若a>0,在[0,3]上存在n个点xi(i=1,2,…,n,n≥3),满足x1=0,xn=3,x1<x2<…<xn , 使|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xn﹣1)﹣f(xn)|=
,求实数a的取值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x)(万
元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)<0的解集为(﹣30,0),且C(x)的最小值是﹣75,若年产量不小于80千件,C(x)=51x+
﹣1450,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;![]()
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos
.
(1)若a=3,b=
,求c的值;
(2)若f(A)=sinA(
cosA﹣sinA),求f(A)的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+2;
(1)若不等式f(x)<6的解集为(﹣1,3),求a的值;
(2)在(1)的条件下,对任意的x∈R,都有f(x)>t﹣f(﹣x),求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com