【题目】若函数f(x)=|x﹣1|+m|x﹣2|+6|x﹣3|在x=2时取得最小值,则实数m的取值范围是 .
【答案】[5,+∞)
【解析】解:当x<1时,f(x)=1﹣x+2m﹣mx+18﹣6x=19+2m﹣(m+7)x,当1≤x<2时,f(x)=x﹣1+2m﹣m,x+18﹣6x=17+2m﹣(m+5)x,f(1)=12+m,
2≤x<3时,f(x)=x﹣1+mx﹣2m+18﹣6x=17﹣2m+(m﹣5)x,f(2)=7,
当x≥3时,f(x)=x﹣1+mz﹣2m+6x﹣18=﹣19﹣2m+(m+7)x,f(3)=m+2,
若函数f(x)=|x﹣1|+m|x﹣2|+6|x﹣3|在x=2时取得最小值,
则
解得m≥5,
故m的取值范围为[5,+∞),
所以答案是:[5,+∞),
【考点精析】解答此题的关键在于理解函数的最值及其几何意义的相关知识,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.
科目:高中数学 来源: 题型:
【题目】数列{an}中,Sn是{an}的前n项和且Sn=2n﹣an ,
(1)求a1 , an;
(2)若数列{bn}中,bn=n(2﹣n)(an﹣2),且对任意正整数n,都有 ,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中正确的是______.
①已知定义在R上的偶函数,则;
②若函数,,值域为,且存在反函数,则函数,与函数,是两个不同的函数﹔
③已知函数,既无最大值,也无最小值;
④函数的所有零点构成的集合共有4个子集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|+a|x﹣1|
(I)当a=1时,解关于x的不等式f(x)≥4
(II)若f(x)≥|x﹣2|的解集包含[ ,2],求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),求f(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,a,b∈R,a≠0,b≠0,f(1)= ,且方程f(x)=x有且仅有一个实数解;
(1)求a、b的值;
(2)当x∈( , ]时,不等式(x+1)f(x)>m(m﹣x)﹣1恒成立,求实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com