精英家教网 > 高中数学 > 题目详情

【题目】下列四个命题中正确的是______

①已知定义在R上的偶函数,则

②若函数,值域为,且存在反函数,则函数与函数是两个不同的函数﹔

③已知函数,既无最大值,也无最小值;

④函数的所有零点构成的集合共有4个子集.

【答案】①②

【解析】

由偶函数的定义可判断;由互为反函数的定义可判断;由的单调性可判断;由的解的个数和集合的子集个数,可判断

已知定义在上是偶函数,设,可得

,故正确;

若函数,值域为,且存在反函数,

则函数与函数,即,由于

是两个不同的函数,故正确;

已知函数,由递减,递减,可得时,2)取得最小值

错误;

函数,由,可得3,解得

的所有零点构成的集合中共有四个元素,共有16个子集,故错误.

故答案为:①②

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对于恒成立,求实数的取值范围

(2)若对于恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)ax2bxc的图象与x轴有两个不同的交点,若f(c)00<x<c时,f(x)>0

(1)证明:f(x)0的一个根;

(2)试比较c的大小;

(3)证明:-2<b<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的导函数y=f'(x)的图象如图所示,给出如下命题:
①0是函数y=f(x)的一个极值点;
②函数y=f(x)在 处切线的斜率小于零;
③f(﹣1)<f(0);
④当﹣2<x<0时,f(x)>0.
其中正确的命题是 . (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P={ },Q={ } ,

(1)

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的中点

(1)求证:

(2)若点为四边形内部及其边界上的点,且三棱锥的体积为三棱柱体积的,试在图中画出点的轨迹,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=|x﹣1|+m|x﹣2|+6|x﹣3|在x=2时取得最小值,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的公差d≠0满足成等比数列,若=1,Sn{}的前n项和,则的最小值为________

【答案】4

【解析】

成等比数列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.

成等比数列,a1=1,

=

∴(1+2d)2=1+12d,d≠0,

解得d=2.

∴an=1+2(n﹣1)=2n﹣1.

Sn=n+×2=n2

==n+1+﹣2≥2﹣2=4,

当且仅当n+1=时取等号,此时n=2,且取到最小值4,

故答案为:4.

【点睛】

本题考查了等差数列的通项公式、前n项和公式,等比中项的性质,基本不等式求最值,在利用基本不等式求最值时,要特别注意拆、拼、凑等技巧,使其满足基本不等式中”(即条件要求中字母为正数)、“”(不等式的另一边必须为定值)、“”(等号取得的条件)的条件才能应用,否则会出现错误.

型】填空
束】
17

【题目】是公比为正数的等比数列,,

(1)的通项公式;

(2)是首项为1,公差为2的等差数列,求数列的前项和

查看答案和解析>>

同步练习册答案