【题目】已知函数f(x)=2sin(x+
)cosx.
(1)若0≤x≤
,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=
,b=2,c=3,求cos(A﹣B)的值.
【答案】
(1)解:f(x)=2sin(x+
)cosx
=(sinx+
cosx)cosx
=sinxcosx+
cos2x
=
sin2x+
cos2x+ ![]()
=sin(2x+
)+
;
由
得,
,
∴
,
∴
,
即函数f(x)的值域为 ![]()
(2)解:由
,
得
,
又由
,∴
,
∴
,解得
;
在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,
解得
;
由正弦定理
,得
,
∵b<a,∴B<A,∴
,
∴cos(A﹣B)=cosAcosB+sinAsinB
= ![]()
【解析】(1)利用三角恒等变换化简f(x),根据x的取值范围即可求出函数f(x)的值域;(2)由f(A)的值求出角A的大小,再利用余弦定理和正弦定理,即可求出cos(A﹣B)的值.
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的导函数y=f'(x)的图象如图所示,给出如下命题:
①0是函数y=f(x)的一个极值点;
②函数y=f(x)在
处切线的斜率小于零;
③f(﹣1)<f(0);
④当﹣2<x<0时,f(x)>0.
其中正确的命题是 . (写出所有正确命题的序号)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中a∈R.
(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;
(2)已知a>0,函数f(x)的反函数为f﹣1(x),若函数y=f(x)+f﹣1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的公差d≠0满足
成等比数列,若
=1,Sn是{
}的前n项和,则
的最小值为________.
【答案】4
【解析】
成等比数列,
=1,可得:
=
,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入
利用分离常数法化简后,利用基本不等式求出式子的最小值.
∵
成等比数列,a1=1,
∴
=
,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+
×2=n2.
∴
=
=n+1+
﹣2≥2
﹣2=4,
当且仅当n+1=
时取等号,此时n=2,且
取到最小值4,
故答案为:4.
【点睛】
本题考查了等差数列的通项公式、前n项和公式,等比中项的性质,基本不等式求最值,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.
【题型】填空题
【结束】
17
【题目】设
是公比为正数的等比数列,
,![]()
(1)求
的通项公式;
(2)设
是首项为1,公差为2的等差数列,求数列
的前
项和![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn=
,求适合方程b1b2+b2b3+…+bnbn+1=
的正整数n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com