精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,其中a∈R.
(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;
(2)已知a>0,函数f(x)的反函数为f1(x),若函数y=f(x)+f1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.

【答案】
(1)解:∵

∴f(﹣x)=﹣ax+log2(2x+1)

=﹣ax+log2(2x+1)﹣log22x

=﹣ax+log2(2x+1)﹣x,

∴f(﹣x)=f(x),

即﹣ax﹣x=ax,

故a= ;此时函数为偶函数,

若a≠﹣ ,函数为非奇非偶函数


(2)解:∵a>0,

单调递增,

又∵函数f(x)的反函数为f1(x),

∴f1(x)单调递增;

∴f(1)+f1(1)=1+log23,

即a+log23+f1(1)=1+log23,

故f1(1)=1﹣a,

即a(1﹣a)+log2(2a1+1)=1,

解得,a=1;

故f(2)=2+log25


【解析】(1)由 得f(﹣x)=﹣ax+log2(2x+1)﹣x,从而可得当a= 时函数为偶函数; (2)可判断 与f1(x)都是增函数,从而可得f(1)+f1(1)=1+log23,从而解出a.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校高三数学备课组为了更好地制定复习计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:

期末分数段

人数

5

10

15

10

5

5

“过关”人数

1

2

9

7

3

4

(1)由以上统计数据完成如下列联表,并判断是否有的把握认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由:

分数低于90分人数

分数不低于90分人数

合计

“过关”人数

“不过关”人数

合计

(2)在期末分数段的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为,求的分布列及数学期望.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正实数x,y满足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy﹣34≥0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是函数的反函数,函数的图像关于直线对称,记.

1)求函数的解析式和定义域﹔

2)在的图像上是否存在这样两个不同点AB,使直线AB恰好与y轴垂直?若存在,求AB的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列性制的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,称数对(a,k)为函数f(x)的“伴随数对”.
(1)判断f(x)=x2是否属于集合M,并说明理由;
(2)若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;
(3)若(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos( x);当x=2时,f(x)=0,求当2014≤x≤2016时,函数y=f(x)的解析式和零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程()的离心率为, 短轴长为2.

(1) 求椭圆的标准方程

(2) 直线()与轴的交点为(点不在椭圆外), 且与椭圆交于两个不同的点. 若线段的中垂线恰好经过椭圆的下端点, 且与线段交于点, 求面积的最大值.

查看答案和解析>>

同步练习册答案