【题目】已知函数
,其中a∈R.
(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;
(2)已知a>0,函数f(x)的反函数为f﹣1(x),若函数y=f(x)+f﹣1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.
【答案】
(1)解:∵
,
∴f(﹣x)=﹣ax+log2(2﹣x+1)
=﹣ax+log2(2x+1)﹣log22x
=﹣ax+log2(2x+1)﹣x,
∴f(﹣x)=f(x),
即﹣ax﹣x=ax,
故a=
;此时函数为偶函数,
若a≠﹣
,函数为非奇非偶函数
(2)解:∵a>0,
∴
单调递增,
又∵函数f(x)的反函数为f﹣1(x),
∴f﹣1(x)单调递增;
∴f(1)+f﹣1(1)=1+log23,
即a+log23+f﹣1(1)=1+log23,
故f﹣1(1)=1﹣a,
即a(1﹣a)+log2(2a﹣1+1)=1,
解得,a=1;
故f(2)=2+log25
【解析】(1)由
得f(﹣x)=﹣ax+log2(2x+1)﹣x,从而可得当a=
时函数为偶函数; (2)可判断
与f﹣1(x)都是增函数,从而可得f(1)+f﹣1(1)=1+log23,从而解出a.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】学校高三数学备课组为了更好地制定复习计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:
期末分数段 |
|
|
|
|
|
|
人数 | 5 | 10 | 15 | 10 | 5 | 5 |
“过关”人数 | 1 | 2 | 9 | 7 | 3 | 4 |
(1)由以上统计数据完成如下
列联表,并判断是否有
的把握认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由:
分数低于90分人数 | 分数不低于90分人数 | 合计 | |
“过关”人数 | |||
“不过关”人数 | |||
合计 |
(2)在期末分数段
的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为
,求
的分布列及数学期望.
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 |
| 2.072 | 2.706 | 3.841 | 5.024 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是函数
的反函数,函数
的图像关于直线
对称,记
.
(1)求函数
的解析式和定义域﹔
(2)在
的图像上是否存在这样两个不同点A,B,使直线AB恰好与y轴垂直?若存在,求A,B的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(x+
)cosx.
(1)若0≤x≤
,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=
,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M是满足下列性制的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,称数对(a,k)为函数f(x)的“伴随数对”.
(1)判断f(x)=x2是否属于集合M,并说明理由;
(2)若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;
(3)若(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos(
x);当x=2时,f(x)=0,求当2014≤x≤2016时,函数y=f(x)的解析式和零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线
,直线
:
(
为参数).
(I)写出曲线
的参数方程,直线
的普通方程;
(II)过曲线
上任意一点
作与
夹角为
的直线,交
于点
,
的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程
(
)的离心率为
, 短轴长为2.
(1) 求椭圆的标准方程;
(2) 直线
(
)与
轴的交点为
(点
不在椭圆外), 且与椭圆交于两个不同的点
. 若线段
的中垂线恰好经过椭圆的下端点
, 且与线段
交于点
, 求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com