科目: 来源: 题型:
【题目】已知a>0,函数f(x)=
+|lnx﹣a|,x∈[1,e2].
(1)当a=3时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若f(x)≤
恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C1:
=1(a>b>0)的离心率为e=
,且过点(1,
).抛物线C2:x2=﹣2py(p>0)的焦点坐标为(0,﹣
).
(Ⅰ)求椭圆C1和抛物线C2的方程;
(Ⅱ)若点M是直线l:2x﹣4y+3=0上的动点,过点M作抛物线C2的两条切线,切点分别为A,B,直线AB交椭圆C1于P,Q两点.
(i)求证直线AB过定点,并求出该定点坐标;
(ii)当△OPQ的面积取最大值时,求直线AB的方程.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某旅游为了解2015年国庆节期间参加某境外旅游线路的游客的人均购物消费情况,随机对50人做了问卷调查,得如下频数分布表:
人均购物消费情况 | [0,2000] | (2000,4000] | (4000,6000] | (6000,8000] | (8000,10000] |
额数 | 15 | 20 | 9 | 3 | 3 |
附:临界值表参考公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=
,其中n=a+b+c+d.![]()
(1)做出这些数据的频率分布直方图并估计次境外旅游线路游客的人均购物的消费平均值;
(2)在调查问卷中有一项是“您会资助失学儿童的金额?”,调查情况如表,请补全如表,并说明是否有95%以上的把握认为资助数额多于或少于500元和自身购物是否到4000元有关?
人均购物消费不超过4000元 | 人均购物消费超过4000元 | 合计 | |
资助超过500元 | 30 | ||
资助不超过500元 | 6 | ||
合计 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四面体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点. ![]()
(1)求异面直线AB与EF所成角的余弦值;
(2)求E到平面ACD的距离;
(3)求EF与平面ACD所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,其中左焦点
(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an是n与Sn的等差中项,bn=an+1.
(1)求证:数列{bn}是等比数列,并求出其通项bn;
(2)若数列{Cn}满足Cn=
且数列{C
}的前n项和为Tn , 证明Tn<2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com