【题目】设、为曲线:上两点,与的横坐标之和为.
(1)求直线的斜率;
(2)为曲线上一点,在处的切线与直线平行,且,求直线的方程.
【答案】(1)1;(2)
【解析】
试题分析:(1)由直线斜率公式可得AB的斜率,再根据A与B的横坐标之和为4,得AB的斜率.(2)先根据导数几何意义得M点坐标,再根据直角三角形性质得,(AB的中点为N),设直线AB的方程为,与抛物线方程联立,利用两点间距离公式以及弦长公式可得关系式,解得.即得直线AB的方程为.
试题解析:解:(1)设A(x1,y1),B(x2,y2),则,,,x1+x2=4,
于是直线AB的斜率.
(2)由,得.
设M(x3,y3),由题设知,解得,于是M(2,1).
设直线AB的方程为,故线段AB的中点为N(2,2+m),|MN|=|m+1|.
将代入得.
当,即时,.
从而.
由题设知,即,解得.
所以直线AB的方程为.
科目:高中数学 来源: 题型:
【题目】如图,⊙O是以AB为直径的圆,点C在圆上,在△ABC和△ACD中,∠ADC=90°,∠BAC=∠CAD,DC的延长线与AB的延长线交于点E.若EB=6,EC=6 ,则BC的长为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1+x﹣ + ﹣ ﹣…+ ﹣ + ,则下列结论正确的是( )
A.f(x)在(0,1)上恰有一个零点
B.f(x)在(0,1)上恰有两个零点
C.f(x)在(﹣1,0)上恰有一个零点
D.f(x)在(﹣1,0)上恰有两个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点.
(1)求异面直线AB与EF所成角的余弦值;
(2)求E到平面ACD的距离;
(3)求EF与平面ACD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.若ξ服从正态分布N(0,2),且P(ξ>2)=0.4,则P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分条件
C.直线ax+y+2=0与ax﹣y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个不透明的箱子里放有四个质地相同的小球,四个小球标的号码分别为1,1,2,3.现甲、乙两位同学依次从箱子里随机摸取一个球出来,记下号码并放回.
(Ⅰ)求甲、乙两位同学所摸的球号码相同的概率;
(Ⅱ)求甲所摸的球号码大于乙所摸的球号码的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系原点O为极点,以x轴非负半轴为极轴,以平面直角坐标系的长度单位为长度单位建立极坐标系.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 设直线l与曲线C相交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an , 则 + + +…+ = .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com