科目: 来源: 题型:
【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
![]()
(1)求二面角F-BE-D的余弦值;
(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量
=(a,
b)与
=(cosA,sinB)平行.
(1)求A;
(2)若a=
,b=2,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数y=f(x﹣1)的图象关于直线x=1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=(
)f(
),则a,b,c的大小关系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为
的等差数列,把函数f(x)的图象沿x轴向左平移
个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是( )
A.在[
,
]上是增函数
B.其图象关于直线x=﹣
对称
C.函数g(x)是奇函数
D.当x∈[
,
π]时,函数g(x)的值域是[﹣2,1]
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,AB=
,BE=
EC,AD=2DC.
![]()
(1)证明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四面体ABCD中,AB,BC,BD两两垂直,BC=BD=2,点E是CD的中点,异面直线AD与BE所成角的余弦值为
,则直线BE与平面ACD所成角的正弦值为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】有下列说法:
①一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是12人;
②采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,27,38,49的同学均选中,则该班学生的人数为60人;
③废品率x%和每吨生铁成本y(元)之间的回归直线方程为
,这表明废品率每增加1%,生铁成本大约增加258元;
④为了检验某种血清预防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防作用”,利用2×2列联表计算得K2的观测值k≈3.918,经查对临界值表知P(K2≥3.841)≈0.05,由此,得出以下判断:在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防的作用”.
正确的有( )
A.①④
B.②③
C.①③
D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com