相关习题
 0  260219  260227  260233  260237  260243  260245  260249  260255  260257  260263  260269  260273  260275  260279  260285  260287  260293  260297  260299  260303  260305  260309  260311  260313  260314  260315  260317  260318  260319  260321  260323  260327  260329  260333  260335  260339  260345  260347  260353  260357  260359  260363  260369  260375  260377  260383  260387  260389  260395  260399  260405  260413  266669 

科目: 来源: 题型:

【题目】若lg(3x)+lg y=lg(x+y+1),则xy的最小值为(  )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

先根据对称的运算性质化简得到3xy=x+y+1,再根据基本不等式即可求出答案.

∵lg(3x)+lgy=lg(3xy)=lg(x+y+1),x>0,y>0,

∴3xy=x+y+1,

∴3xy≥3,当且仅当x=y=1时取等号,

即xy≥1,

xy的最小值是1,

故选:A

【点睛】

在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误

型】单选题
束】
12

【题目】已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于(

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

【答案】A

【解析】

由题意可得 q1,且 an 0,由条件可得 a1a2…a13=4a1a2…a9,化简得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.

等比数列{an}是递增数列,其前n项的积为Tn(n∈N*),若T13=4T9 ,设公比为q,

则由题意可得 q1,且 an >0.

∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.

又由等比数列的性质可得 a8a15=a10a13=a11a12,∴a8a15=2.

故选:A.

【点睛】

本题主要考查等比数列的定义和性质,求得 a10a11a12a13=4是解题的关键.

型】单选题
束】
10

【题目】若直线y=2x上存在点(xy)满足约束条件,则实数m的最大值为

A. -1 B. 1 C. D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】单选题
束】
9

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,△ABC是边长为2的正三角形,∠PCA=90°,E,H分别为AP,AC的中点,AP=4,BE=
(Ⅰ)求证:AC⊥平面BEH;
(Ⅱ)求直线PA与平面ABC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.
(1)求抛物线准线方程;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

【答案】D

【解析】

根据函数的单调性可得an+1﹣an0对于n∈N*恒成立,建立关系式,解之即可求出k的取值范围.

数列{an},且{an}单调递增

∴an+1﹣an0对于n∈N*恒成立即(n+1)2﹣k(n+1)﹣(n2﹣kn)=2n+1﹣k>0对于n∈N*恒成立

∴k<2n+1对于n∈N*恒成立,即k<3

故选:D.

【点睛】

本题主要考查了数列的性质,本题易错误地求导或把它当成二次函数来求解,注意n的取值是解题的关键,属于易错题.

型】单选题
束】
8

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根据正弦定理把转化为边的关系,进而根据ABC的周长,联立方程组,可求出a的值.

根据正弦定理,可化为

∵△ABC的周长为

联立方程组

解得a=2.

故选:B

【点睛】

(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.

(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.

型】单选题
束】
7

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

科目: 来源: 题型:

【题目】设二次函数f(x)=ax2+bx+c(a,b∈R)满足条件:①当x∈R时,f(x)的最大值为0,且f(x﹣1)=f(3﹣x)成立;②二次函数f(x)的图象与直线y=﹣2交于A、B两点,且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的实数n(n<﹣1),使得存在实数t,只要当x∈[n,﹣1]时,就有f(x+t)≥2x成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin()=2
(Ⅰ)求曲线C和直线l在该直角坐标系下的普通方程;
(Ⅱ)动点A在曲线C上,动点B在直线l上,定点P的坐标为(﹣2,2),求|PB|+|AB|的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2},则关于x的不等式bx2-ax-2>0的解集为(  )

A. {x|-2<x<1} B. {x|x>1或x<-2}

C. {x|x>2或x<-1} D. {x|x<-1或x>1}

【答案】B

【解析】

利用不等式的解集与方程根的关系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.

关于x的不等式ax2+bx+2>0的解集为(﹣1,2),

﹣1,2是ax2+bx+2=0(a<0)的两根

∴a=﹣1,b=1

不等式bx2﹣ax﹣2>0为x2+x﹣2>0,

∴x<﹣2或x>1

故选:B.

【点睛】

(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式。

2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法.

型】单选题
束】
6

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

查看答案和解析>>

同步练习册答案