科目: 来源: 题型:
【题目】下列命题的叙述:
①若p:x>0,x2﹣x+1>0,则¬p:x0≤0,x02﹣x0+1≤0;
②三角形三边的比是3:5:7,则最大内角为
π;
③若
=
,则
=
;
④ac2<bc2是a<b的充分不必要条件,
其中真命题的个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】先将函数y=2sinx的图象纵坐标不变,横坐标压缩为原来一半,再将得到的图象向左平移
个单位,则所得图象的对称轴可以为( )
A.x=﹣ ![]()
B.x= ![]()
C.x=﹣ ![]()
D.x= ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=|2x+3|+|x﹣1|.
(1)解不等式f(x)>4;
(2)若x∈(﹣∞,﹣
),不等式a+1<f(x)恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知点R的极坐标为(2
,
),曲线C的参数方程为
(θ为参数).
(1)求点R的直角坐标,化曲线C的参数方程为普通方程;
(2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数g(x)=lnx﹣ax2+(2﹣a)x,a∈R.
(1)求g(x)的单调区间;
(2)若函数f(x)=g(x)+(a+1)x2﹣2x,x1 , x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′(
)<0.
查看答案和解析>>
科目: 来源: 题型:
【题目】设已知抛物线C:y2=2px的焦点为F1 , 过F1的直线l与曲线C相交于M,N两点.
(1)若直线l的倾斜角为60°,且|MN|=
,求p;
(2)若p=2,椭圆
+y2=1上两个点P,Q,满足:P,Q,F1三点共线且PQ⊥MN,求四边形PMQN的面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1. ![]()
(1)设点E为PD的中点,求证:CE∥平面PAB;
(2)线段PD上是否存在一点N,使得直线CN与平面PAC所成的角θ的正弦值为
?若存在,试确定点N的位置,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
组数 | 分组(单位:岁) | 频数 | 频率 |
1 | [20,25) | 5 | 0.05 |
2 | [25,30) | 20 | 0.20 |
3 | [30,35) | a | 0.35 |
4 | [35,40) | 30 | b |
5 | [40,45] | 10 | 0.10 |
合计 | n | 1.00 | |
![]()
(1)求出表中的a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C1和双曲线C2焦点相同,且离心率互为倒数,F1 , F2是它们的公共焦点,P是椭圆和双曲线在第一象限的交点,若∠F1PF2=60°,则椭圆C1的离心率为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com