科目: 来源: 题型:
【题目】如图,已知直线l:x+ y﹣c=0(c>0)为公海与领海的分界线,一艘巡逻艇在O处发现了北偏东60°海面上A处有一艘走私船,走私船正向停泊在公海上接应的走私海轮B航行,以使上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若O与公海的最近距离20海里,要保证在领海内捕获走私船(即不能截获走私船的区域与公海不想交).则O,A之间的最远距离是多少海里?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)= sin2x+sinxcosx﹣
(1)求函数y=f(x)在[0, ]上的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,求证:存在无穷多个互不相同的整数x0 , 使得g(x0)> .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB=60°,AB=2,AD=1.
(1)求证:PA⊥BD;
(2)若∠PCD=45°,求点D到平面PBC的距离h.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在Z上的函数f(x),对任意x,y∈Z,都有f(x+y)+f(x﹣y)=4f(x)f(y)且f(1)= ,则f(0)+f(1)+f(2)+…+f(2017)= .
查看答案和解析>>
科目: 来源: 题型:
【题目】设集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是单元素集合,若存在a<0,b<0使点P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},则点P所在的区域的面积为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},则( )
A.任意m∈A,都有f(m+3)>0
B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0
D.存在m∈A,都有f(m+3)<0
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}满足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)设bn= +1,n∈N*,求证:数列{bn}是等比数列,并求出其通项公式;
(3)对任意的m≥2,m∈N*,在数列{an}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com