精英家教网 > 高中数学 > 题目详情

【题目】设集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是单元素集合,若存在a<0,b<0使点P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},则点P所在的区域的面积为

【答案】2π
【解析】解:集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是一个单元素集合, ∴直线和抛物线相切,
∴由x2+2bx+1=2a(x+b),即x2+2(b﹣a)x+1﹣2ab=0,有相等的实根,所以△=0即a2+b2=1,
∵存在a<0,b<0,P={(x,y)|(x﹣a)2+(y﹣b)2≤1},
∴圆心在以原点为圆心,以1为半径的圆上的一部分(第三象限)
∴如图所示,集合P中圆的边界的移动是半径为1的圆的边界的移动就是沿着那个半径为2的那个 圆弧上,
∴集合P的面积=半径为1小圆的面积+半径为2大圆的面积的
∴集合C的面积=π+π=2π,
所以答案是:2π.

【考点精析】认真审题,首先需要了解定积分的概念(定积分的值是一个常数,可正、可负、可为零;用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=lnx﹣ax2+(2﹣a)x,a∈R.
(1)求g(x)的单调区间;
(2)若函数f(x)=g(x)+(a+1)x2﹣2x,x1 , x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′( )<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

附:回归直线的斜率和截距的最小二乘估计公式分别为:
参考数据:(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲
已知 = ).
(Ⅰ)当 时,解不等式
(Ⅱ)若不等式 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)设bn= +1,n∈N*,求证:数列{bn}是等比数列,并求出其通项公式;
(3)对任意的m≥2,m∈N*,在数列{an}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项a1 , a2 , …,an(n∈N*)组成集合An={a1 , a2 , …,an},从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),例如:对于数列{2n﹣1},当n=1时,A1={1},T1=1;n=2时,A2={1,3},T1=1+3,T2=13;
(1)若集合An={1,3,5,…,2n﹣1},求当n=3时,T1 , T2 , T3的值;
(2)若集合An={1,3,7,…,2n﹣1},证明:n=k时集合Ak的Tm与n=k+1时集合Ak+1的Tm(为了以示区别,用Tm′表示)有关系式Tm′=(2k+1﹣1)Tm1+Tm , 其中m,k∈N*,2≤m≤k;
(3)对于(2)中集合An . 定义Sn=T1+T2+…+Tn , 求Sn(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,数列{bn}满足 ,若n∈N*时,anbn+1﹣bn+1=nbn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设cn=anbn , 求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=x+yi(x,y∈R)满足 ,则y≥x﹣1的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是( ) ①f(2x)=2f(x);
②若f(x1)=f(x2),则x1﹣x2<1;
③任意x1 , x2∈R,f(x1+x2)≤f(x1)+f(x2);

A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

同步练习册答案