精英家教网 > 高中数学 > 题目详情

【题目】选修4—5:不等式选讲
已知 = ).
(Ⅰ)当 时,解不等式
(Ⅱ)若不等式 恒成立,求实数 的取值范围.

【答案】(Ⅰ)当a=1时,等式 ,即
等价于
解得 或x>4,
所以原不等式的解集为
(Ⅱ)设 ,则
上是减函数,在 上是增函数,
∴当 时, 取最小值且最小值为
,解得
∴实数a的取值范围为 .
【解析】(Ⅰ)去绝对值分情况讨论。
(Ⅱ)化简 ,使 f ( x )> , 可得到a的范围
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.
(Ⅰ)求小明在这十次游戏中所得奖品数的均值;
(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;
(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:

编号

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81


(1)求乙厂生产的产品数量:
(2)当产品中的微量元素x、y满足:x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|3x﹣1|+x+2,
(1)解不等式f(x)≤3,
(2)若不等式f(x)>a的解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是定义在 上的可导函数 的导数,对任意 ,且 ,且 ,都有 , ,则下列结论错误的是(
A. 的增区间为
B. =3处取极小值,在 =-1处取极大值??
C. 有3个零点
D. 无最大值也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+ a2﹣a(a>0):月需求量为y2吨,y2=﹣ x2 x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知a= ,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是单元素集合,若存在a<0,b<0使点P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},则点P所在的区域的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是常数,对任意实数x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)设m>n>0,求证:2m+ ≥2n+a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线C: ,F1 , F2为其左右两个焦点.
(1)设O为坐标原点,M为双曲线C右支上任意一点,求 的取值范围;
(2)若动点P与双曲线C的两个焦点F1 , F2的距离之和为定值,且cos∠F1PF2的最小值为 ,求动点P的轨迹方程.

查看答案和解析>>

同步练习册答案