科目: 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( ) (参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象( )
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xlnx+2,g(x)=x2﹣mx.
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有两个不同的实数根,求证:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[ ,e]使得mf′(x)+g(x)≥2x+m成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C: (a>b>0)经过点( ,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为 .
(1)求椭圆C的方程;
(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图长方体ABCD﹣A1B1C1D1的底面边长为1,侧棱长为2,E、F、G分别为CB1、CD1、AB的中点.
(Ⅰ)求证:FG∥面ADD1A1;
(Ⅱ)求二面角B﹣EF﹣C的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1 .
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn= ,数列{cn}的前n项和为Tn , 若不等式(﹣1)nλ<Tn+ 对一切n∈N* , 求实数λ的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+ )+m(m∈R),当x∈[0, ]时,f(x)的最小值为﹣1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f( )的实数x为 ( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com