科目: 来源: 题型:
【题目】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )
A.101
B.808
C.1212
D.2012
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数). (Ⅰ)若a=1,求函数y=f(x)g(x)在区间[﹣2,0]上的最大值;
(Ⅱ)若a=﹣1,关于x的方程f(x)=kg(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1 , x2∈[0,2],x1≠x2 , 不等式|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|均成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设椭圆C1:
+
=1(a>b>0),长轴的右端点与抛物线C2:y2=8x的焦点F重合,且椭圆C1的离心率是
. ![]()
(1)求椭圆C1的标准方程;
(2)过F作直线l交抛物线C2于A,B两点,过F且与直线l垂直的直线交椭圆C1于另一点C,求△ABC面积的最小值,以及取到最小值时直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】设Sn , Tn分别是数列{an},{bn}的前n项和,已知对于任意n∈N* , 都有3an=2Sn+3,数列{bn}是等差数列,且T5=25,b10=19. (Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
,求数列{cn}的前n项和Rn , 并求Rn的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】以“赏中华诗词,寻文化基因,品生活之美”为宗旨的《中国诗词大会》,是央视科教频道推出的一档大型演播室文化益智节目,每季赛事共分为10场,每场分个人追逐赛与擂主争霸赛两部分,其中擂主争霸赛在本场个人追逐赛的优胜者与上一场擂主之间进行,一共备有9道抢答题,选手抢到并答对获得1分,答错对方得1分,当有一个选手累计得分达到5分时比赛结束,该选手就是本场的擂主,在某场比赛中,甲、乙两人进行擂主争霸赛,设每个题目甲答对的概率都为
,乙答对的概率为
,每道题目都有人抢答,且每人抢到答题权的概率均为
,各题答题情况互不影响. (Ⅰ)求抢答一道题目,甲得1分的概率;
(Ⅱ)现在前5题已经抢答完毕,甲得2分,乙得3分,在接下来的比赛中,设甲的得分为ξ,求ξ的分布列及数学期望Eξ.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1千多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑指四个面均为直角三角形的四面体.如图,在堑堵ABC﹣A1B1C1中,AC⊥BC. ![]()
(Ⅰ)求证:四棱锥B﹣A1ACC1为阳马;并判断四面体B﹣A1CC1是否为鳖臑,若是,请写出各个面的直角(只要求写出结论).
(Ⅱ)若A1A=AB=2,当阳马B﹣A1ACC1体积最大时,求二面角C﹣A1B﹣C1的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设△ABC的三个内角分别为A,B,C.向量
共线. (Ⅰ)求角C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,试判断△ABC的形状.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=
,关于x的方程f2(x)﹣2af(x)+a﹣1=0(a∈R)有四个相异的实数根,则a的取值范围是( )
A.(﹣1,
)
B.(1,+∞)
C.(
,2)
D.(
,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线
右支上非顶点的一点A关于原点O的对称点为B,F为其右焦点,若AF⊥FB,设∠ABF=θ且
,则双曲线离心率的取值范围是( )
A.![]()
B.![]()
C.![]()
D.(2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com