科目: 来源: 题型:
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.
(Ⅰ)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(Ⅱ)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望E(X).
参考公式与数据:
,其中n=a+b+c+d.
P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,AB=AC=CC1 , 平面BAC1⊥平面ACC1A1 , ∠ACC1=∠BAC1=60°,AC1∩A1C=O. ![]()
(Ⅰ)求证:BO⊥平面AA1C1C;
(Ⅱ)求二面角A﹣BC1﹣B1的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四面体ABCD的顶点都在同一个球的球面上,BC=
,BD=4,且满足BC⊥BD,AC⊥BC,AD⊥BD.若该三棱锥的体积为
,则该球的球面面积为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】若正态变量ξ服从正态分布N(μ,σ2),则ξ在区间(μ﹣σ,μ+σ),(μ﹣2σ,μ+2σ),(μ﹣3σ,μ+3σ)内取值的概率分别是0.6826,0.9544,0.9973.已知某大型企业为10000名员工定制工作服,设员工的身高(单位:cm)服从正态分布N(172,52),则适宜身高在177~182cm范围内员工穿的服装大约要定制套.(用数字作答)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在(0,+∞)上的函数f(x)的导函数为f'(x),满足x2f'(x)+xf(x)=lnx,f(e)=
,则f(x)( )
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)满足条件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系中,已知O为坐标原点,点A、B的坐标分别为(1,1)、(﹣3,3).若动点P满足
,其中λ、μ∈R,且λ+μ=1,则点P的轨迹方程为( )
A.x﹣y=0
B.x+y=0
C.x+2y﹣3=0
D.(x+1)2+(y﹣2)2=5
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线C1的参数方程为
(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com