相关习题
 0  260715  260723  260729  260733  260739  260741  260745  260751  260753  260759  260765  260769  260771  260775  260781  260783  260789  260793  260795  260799  260801  260805  260807  260809  260810  260811  260813  260814  260815  260817  260819  260823  260825  260829  260831  260835  260841  260843  260849  260853  260855  260859  260865  260871  260873  260879  260883  260885  260891  260895  260901  260909  266669 

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,已知△ABC的两个顶点A,B的坐标分别为(﹣1,0),(1,0),且AC、BC所在直线的斜率之积等于﹣2,记顶点C的轨迹为曲线E.
(1)求曲线E的方程;
(2)设直线y=2x+m(m∈R且m≠0)与曲线E相交于P、Q两点,点M( ,1),求△MPQ面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别是A1B,AC1的中点.
(1)求证:平面AEF⊥平面AA1B1B;
(2)若A1A=2AB=2BC=4,求三棱锥F﹣ABC的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:

指标

1号小白鼠

2号小白鼠

3号小白鼠

4号小白鼠

5号小白鼠

A

5

7

6

9

8

B

2

2

3

4

4


(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程 = x+
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率. 参考公式: = = =

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.
(I)求实数a,b的值;
(Ⅱ)当a>0时,求曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列判断正确的是(
A.若事件A与事件B互斥,则事件A与事件B对立
B.函数y= (x∈R)的最小值为2
C.若直线(m+1)x+my﹣2=0与直线mx﹣2y+5=0互相垂直,则m=1
D.“p∧q为真命题”是“p∨q为真命题”的充分不必要条件

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=|2x+ |+a|x﹣ |.
(Ⅰ)当a=﹣1时,解不等式f(x)≤3x;
(Ⅱ)当a=2时,若关于x的不等式2f(x)+1<|1﹣b|的解集为空集,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,取相同的长度单位,已知曲线C的极坐标方程为ρ=2 sinθ,直线l的参数方程为 (t为参数).
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程.
(Ⅱ)若P(3, ),直线l与曲线C相交于M,N两点,求|PM|+|PN|的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ex(其中e为自然对数的底数),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣ ,求T(x)在[0,1]上的最大值;
(2)若m=﹣ ,n∈N* , 求使f(x)的图象恒在g(x)图象上方的最大正整数n.[注意:7<e2 ].

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,若圆x2+y2=a2被直线x﹣y﹣ =0截得的弦长为2
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得 为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】4月23日是世界读书日,为提高学生对读书的重视,让更多的人畅游于书海中,从而收获更多的知识,某高中的校学生会开展了主题为“让阅读成为习惯,让思考伴随人生”的实践活动,校学生会实践部的同学随即抽查了学校的40名高一学生,通过调查它们是喜爱读纸质书还是喜爱读电子书,来了解在校高一学生的读书习惯,得到如表列联表:

喜欢读纸质书

不喜欢读纸质书

合计

16

4

20

8

12

20

合计

24

16

40

(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?
(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).
参考公式:K2= ,其中n=a+b+c+d.
下列的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案