科目: 来源: 题型:
【题目】函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是( )
A.(2,+∞)
B.(1,+∞)
C.(
,+∞)
D.(
,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的离心率是
,且过点
.直线y=
x+m与椭圆C相交于A,B两点. (Ⅰ)求椭圆C的方程;
(Ⅱ)求△PAB的面积的最大值;
(Ⅲ)设直线PA,PB分别与y轴交于点M,N.判断|PM|,|PN|的大小关系,并加以证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,其中a∈R. (Ⅰ)给出a的一个取值,使得曲线y=f(x)存在斜率为0的切线,并说明理由;
(Ⅱ)若f(x)存在极小值和极大值,证明:f(x)的极小值大于极大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,CD⊥EA,CD=2EF=2,ED=
.M为棱FC上一点,平面ADM与棱FB交于点N. ![]()
(Ⅰ)求证:ED⊥CD;
(Ⅱ)求证:AD∥MN;
(Ⅲ)若AD⊥ED,试问平面BCF是否可能与平面ADMN垂直?若能,求出
的值;若不能,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设{an}是首项为1,公差为2的等差数列,{bn}是首项为1,公比为q的等比数列.记cn=an+bn , n=1,2,3,….
(1)若{cn}是等差数列,求q的值;
(2)求数列{cn}的前n项和Sn .
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
![]()
(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某班开展一次智力竞赛活动,共a,b,c三个问题,其中题a满分是20分,题b,c满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a与题b的人数之和为29,答对题a与题c的人数之和为25,答对题b与题c的人数之和为20.则该班同学中只答对一道题的人数是;该班的平均成绩是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是( )
A.(2,+∞)
B.(1,+∞)
C.(
,+∞)
D.(
,+∞)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1所示,在等腰梯形ABCD中,
.把△ABE沿BE折起,使得
,得到四棱锥A﹣BCDE.如图2所示. ![]()
(1)求证:面ACE⊥面ABD;
(2)求平面ABE与平面ACD所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com