科目: 来源: 题型:
【题目】已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣
<φ<0)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0 , 2)和(x0+2π,﹣2).![]()
(1)求函数f(x)的解析式;
(2)若锐角θ满足f(2θ+
)=
,求f(2θ)的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在[0,1]上的函数满足:①f(0)=f(1)=0,②对于所有x,y∈[0,1]且x≠y有|f(x)﹣f(y)|<
|x﹣y|.若当所有的x,y∈[0,1]时,|f(x)﹣f(y)|<k,则k的最小值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学为研究函数
的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xlnx+(1﹣x)ln(1﹣x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求证:alna+blnb+clnc≥(a﹣2)ln2.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判.每局比赛结束时,负的一方在下局当裁判,假设每局比赛中,甲胜乙的概率为
,甲胜丙、乙胜丙的概率都是
,各局比赛的结果相互独立,第一局甲当裁判.
(1)求第3局甲当裁判的概率;
(2)记前4局中乙当裁判的次数为X,求X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列{an}是各项均为正数的等比数列,其前n项和为Sn , 且a1a5=64,S5﹣S3=48.
(1)求数列{an}的通项公式;
(2)设有正整数m,l(5<m<l),使得am , 5a5 , al成等差数列,求m,l的值;
(3)设k,m,l∈N*,k<m<1,对于给定的k,求三个数 5ak , am , al经适当排序后能构成等差数列的充要条件.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x3
(1﹣a)x2﹣3ax+1,a>0.
(1)试讨论f(x)(x≥0)的单调性;
(2)证明:对于正数a,存在正数p,使得当x∈[0,p]时,有﹣1≤f(x)≤1;
(3)设(1)中的p的最大值为g(a),求g(a)的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图扇形AOB是一个观光区的平面示意图,其中∠AOB的圆心角为
,半径OA为1Km,为了便于游客观光休闲,拟在观光区内铺设一条从入口A到出口B的观光道路,道路由圆弧AC、线段CD及线段BD组成.其中D在线段OB上,且CD∥AO,设∠AOC=θ,![]()
(1)用θ表示CD的长度,并写出θ的取值范围.
(2)当θ为何值时,观光道路最长?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E:
(a>b>0)的右准线的方程为x=
,左、右两个焦点分别为F1(
),F2(
).![]()
(1)求椭圆E的方程;
(2)过F1 , F2两点分别作两条平行直线F1C和F2B交椭圆E于C,B两点(C,B均在x轴上方),且F1C+F2B等于椭圆E的短轴的长,求直线F1C的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且
,AD=CD=1.![]()
(1)求证:BD⊥AA1;
(2)若E为棱BC的中点,求证:AE∥平面DCC1D1 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com