相关习题
 0  260798  260806  260812  260816  260822  260824  260828  260834  260836  260842  260848  260852  260854  260858  260864  260866  260872  260876  260878  260882  260884  260888  260890  260892  260893  260894  260896  260897  260898  260900  260902  260906  260908  260912  260914  260918  260924  260926  260932  260936  260938  260942  260948  260954  260956  260962  260966  260968  260974  260978  260984  260992  266669 

科目: 来源: 题型:

【题目】若函数f(x)= . (a>0且a≠1),函数g(x)=f(x)﹣k.
①若a= ,函数g(x)无零点,则实数k的取值范围为
②若f(x)有最小值,则实数a的取值范围是

查看答案和解析>>

科目: 来源: 题型:

【题目】在空间直角坐标系O﹣xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1, ),则三棱锥P﹣ABC在坐标平面xOz上的正投影图形的面积为;该三棱锥的最长棱的棱长为

查看答案和解析>>

科目: 来源: 题型:

【题目】四支足球队进行单循环比赛(每两队比赛一场),每场比赛胜者得3分,负者得0分,平局双方各得1分.比赛结束后发现没有足球队全胜,且四队得分各不相同,则所有比赛中最多可能出现的平局场数是(  )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目: 来源: 题型:

【题目】设点A(0,1),B(2,﹣1),点C在双曲线M: ﹣y2=1上,则使△ABC的面积为3的点C的个数为(  )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】第五届北京农业嘉年华于2017年3月11日至5月7日在昌平区兴寿镇草莓博览园中举办,设置“三馆两园一带一谷一线”八大功能板块.现安排六名志愿者去其中的“三馆两园”参加志愿者服务工作,若每个“馆”与“园”都至少安排一人,则不同的安排方法种数为(  )
A.C A
B.5C A
C.5A
D.C A

查看答案和解析>>

科目: 来源: 题型:

【题目】命题p:数列{an}的前n项和Sn=an2+bn+c(a≠0);命题q:数列{an}是等差数列.则p是q的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex x2 , 其中a∈R,e为自然对数的底数
(Ⅰ)函数f(x)的图象能否与x轴相切?若能与x轴相切,求实数a的值;否则,请说明理由;
(Ⅱ)若函数y=f(x)+2x在R上单调递增,求实数a能取到的最大整数值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C1:x2+y2=r2(r>0)与直线l0:y= 相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足 ,设动点M的轨迹为曲线C.
(1)求动点M的轨迹曲线C的方程;
(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD, ,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.

(1)求证:EF⊥平面BCF;
(2)点M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.

查看答案和解析>>

同步练习册答案