科目: 来源: 题型:
【题目】已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f(x)≥0,f(x)是增函数,则a=f(2010),b=f(
),c=﹣f(
)的大小关系是( )
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
为半圆
的直径,点
是半圆弧上的两点,
,
.曲线
经过点
,且曲线
上任意点
满足:
为定值.![]()
(Ⅰ)求曲线
的方程;
(Ⅱ)设过点
的直线
与曲线
交于不同的两点
,求
面积最大时的直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形
中,点
在线段
上,
,
,沿直线
将
翻折成
,使点
在平面
上的射影
落在直线
上.
(Ⅰ)求证:直线
平面
;
(Ⅱ)求二面角
的平面角的余弦值.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方体
的棱长为1,
分别是棱
的中点,过
的平面与棱
分别交于点
.设
,
.![]()
①四边形
一定是菱形;②
平面
;③四边形
的面积
在区间
上具有单调性;④四棱锥
的体积为定值.
以上结论正确的个数是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线
的极坐标方程为
,曲线
的极坐标方程为
.
(1)设
为参数,若
,求直线
的参数方程;
(2)已知直线
与曲线
交于
,设
,且
,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
与直线
相切.
(1)若直线
与圆
交于
两点,求
;
(2)设圆
与
轴的负半轴的交点为
,过点
作两条斜率分别为
的直线交圆
于
两点,且
,试证明直线
恒过一定点,并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
| 上一个年度未发生有责任道路交通事故 | 下浮10% |
| 上两个年度未发生有责任道路交通事故 | 下浮20% |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
| 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
| 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
求一辆普通6座以下私家车(车险已满三年)在下一年续保时保费高于基本保费的频率;
某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com