科目: 来源: 题型:
【题目】如图,某生态园将一块三角形地
的一角
开辟为水果园,已知角
为
,
的长度均大于200米,现在边界
处建围墙,在
处围竹篱笆.
(1)若围墙
、
总长度为200米,如何可使得三角形地块
面积最大?
(2)已知竹篱笆长为
米,
段围墙高1米,
段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD
底面ABCD,
;
(1)求证:平面PAB
平面PCD;
(2)若过点B的直线
垂直平面PCD,求证:
//平面PAD.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD是矩形,PA
面ABCD,且AB=2,AD=4,
AP=4,F是线段BC的中点.
⑴ 求证:面PAF
面PDF;
⑵ 若E是线段AB的中点,在线段AP上是否存在一点G,使得EG
面PDF?若存在,求出线段AG的长度;若不存在,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品
千件
并全部销售完,每千件的销售收入为
万元,且
.
⑴ 写出年利润
(万元)关于年产量
(千件)的函数解析式;
⑵ 当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入
年总成本).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
,抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上各取两个点,其坐标分别是
,
,
,
.
(1)求
,
的标准方程;
(2)是否存在直线
满足条件:①过
的焦点
;②与
交于不同的两点
且满足
?若存在,求出直线方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示的几何体是由棱台
和棱锥
拼接而成的组合体,其底面四边形
是边长为
的菱形,且
,
平面
,
.
(1)求证:平面
平面
;
(2)求二面角
的余弦值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某校举办“中国诗词大赛”活动,某班派出甲乙两名选手同时参加比赛. 大赛设有15个诗词填空题,其中“唐诗”、“宋词”和“毛泽东诗词”各5个.每位选手从三类诗词中各任选1个进行作答,3个全答对选手得3分,答对2个选手得2分,答对1个选手得1分,一个都没答对选手得0分. 已知“唐诗”、“宋词”和“毛泽东诗词”中甲能答对的题目个数依次为5,4,3,乙能答对的题目个数依此为4,5,4,假设每人各题答对与否互不影响,甲乙两人答对与否也互不影响.
求:(1)甲乙两人同时得到3分的概率;
(2)甲乙两人得分之和
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市根据地理位置划分成了南北两区,为调查该市的一种经济作物
(下简称
作物)的生长状况,用简单随机抽样方法从该市调查了 500 处
作物种植点,其生长状况如表:
![]()
其中生长指数的含义是:2 代表“生长良好”,1 代表“生长基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.
(1)估计该市空气质量差的
作物种植点中,不绝收的种植点所占的比例;
(2)能否有 99%的把握认为“该市
作物的种植点是否绝收与所在地域有关”?
(3)根据(2)的结论,能否提供更好的调查方法来估计该市
作物的种植点中,绝收种植点的比例?请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.
(1)求
的方程;
(2)若动点
在直线
上,过
作直线交椭圆
于
两点,使得
,再过
作直线
,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com