精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

【答案】(1)(2)

【解析】试题分析

1)由题意得根据离心率为可得,故可得到C的方程。(2)由为线段的中点。设,当时,由“点差法”可得直线的斜率为,从而直线的方程可求得为

过定点;当时, 过点。故可得直线过点

试题解析:

(1)由题意知

又椭圆的离心率为,所以

所以

所以椭圆的方程为.

(2)因为直线的方程为,设

①当时,设,显然

可得,即,

,所以为线段的中点,

故直线的斜率为

所以直线的方程为

,显然恒过定点

②当时, 过点

综上可得直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若如图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为 ,三棱锥D﹣BCE的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (本小题满分12分)

如图, 在四面体ABOC中, , 且.

)设为的中点, 证明: 在上存在一点,使,并计算

)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,点的中点,点为线段垂直平分线上的一点,且,四边形为矩形,固定边,在平面内移动顶点,使得的内切圆始终与切于线段的中点,且在直线的同侧,在移动过程中,当取得最小值时,点到直线的距离为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为AB两点的极坐标分别为.

()求圆C的普通方程和直线的直角坐标方程;

()P是圆C上任一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案