相关习题
 0  260851  260859  260865  260869  260875  260877  260881  260887  260889  260895  260901  260905  260907  260911  260917  260919  260925  260929  260931  260935  260937  260941  260943  260945  260946  260947  260949  260950  260951  260953  260955  260959  260961  260965  260967  260971  260977  260979  260985  260989  260991  260995  261001  261007  261009  261015  261019  261021  261027  261031  261037  261045  266669 

科目: 来源: 题型:

【题目】已知函数 .
1)若曲线在点处的切线垂直于轴,求实数的值;

2时,求函数的最小值;

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E的中心在原点,焦点在x轴,焦距为2,且长轴长是短轴长的

()求椭圆E的标准方程;

()P(20),过椭圆E左焦点F的直线lEAB两点,若对满足条件的任意直线l,不等式 λ(λR)恒成立,求λ的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:

记某企业每天由空气污染造成的经济损失T(单位:元),空气质量指数API.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API150时造成的经济损失为200元,当API200时,造成的经济损失为400元);当API大于300时造成的经济损失为2000.

(1)试写出函数T()的表达式:

(2)试估计在本年内随机抽取一天,该天经济损失大于200元且不超过600元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关.

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】下列五个命题:

(1)函数内单调递增。

(2)函数的最小正周期为2

(3)函数的图像关于点对称。

(4)函数的图像关于直线成轴对称。

(5)把函数 的图象向右平移得到函数的图象。

其中真命题的序号是________________

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

)若,求函数的单调区间.

)若函数在区间上是减函数,求实数的取值范围.

)过坐标原点作曲线的切线,证明:切点的横坐标为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,底面分别是棱的中点,为棱上的一点,且//平面.

(1)的值;

(2)求证:

(3)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若方程存在两个不同的实数根 ,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知为椭圆 的右焦点, 为椭圆的下、上、右三个顶点, 的面积之比为.

(1)求椭圆的标准方程;

(2)试探究在椭圆上是否存在不同于点 的一点满足下列条件:点轴上的投影为 的中点为,直线交直线于点 的中点为,且的面积为.若不存在,请说明理由;若存在,求出点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形, ,且 .

(1)求证:平面平面

(2)设,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如表:

年份

2011

2012

2013

2014

2015

2016

年份代码

1

2

3

4

5

6

使用率

11

13

16

15

20

21

(1)请根据以上数据,用最小二乘法求水上摩托使用率关于年份代码的线性回归方程,并预测该娱乐场2018年水上摩托的使用率;

(2)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身的发展需要,准备重新购进一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、1.2万元.根据以往经验,每辆水上摩托的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:

已知每辆水上摩托从购入到淘汰平均年收益是0.8万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润收益购车成本)的期望值为参考值,则该娱乐场的负责人应该选购Ⅰ型水上摩托还是Ⅱ型水上摩托?

附:回归直线方程为,其中 .

查看答案和解析>>

同步练习册答案