精英家教网 > 高中数学 > 题目详情

【题目】设函数

)若,求函数的单调区间.

)若函数在区间上是减函数,求实数的取值范围.

)过坐标原点作曲线的切线,证明:切点的横坐标为

【答案】)单调减区间为,单调增区间为.(见解析

【解析】试题分析:(1)时,求出函数的导函数,分别令,解出不等式得单调区间;(2)函数在区间上是减函数,即对任意恒成立,利用分离参数法可得最后结果;(3)设切点为,对函数进行求导,根据导数的几何意义得,根据切线过原点,可得斜率为,两者相等化简可得,先证存在性,再通过单调性证明唯一性.

试题解析:)当时, ,则,令,则∴函数的单调减区间为,单调增区间为

在区间上是减函数,∴对任意恒成立,即对任意恒成立,

,则易知上单调递减,∴

)设切点为 ∴切线的斜率

又切线过原点, ,即

存在性, 满足方程

所以是方程的根唯一性,

,则上单调递增,且∴方程有唯一解综上,过坐标原点作曲线的切线,则切点的横坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD及其矩形附属设施EFGH,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O,半径为R,矩形的一边AB在直径上,点CDGH在圆周上,EF在边CD上,且

1)记游泳池及其附属设施的占地面积为,求的表达式;

2为何值时,能符合园林局的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数的最大值;

2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;

(3)当 时,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在曲线上,过原点,且与轴的另一个交点为,若线段和曲线上分别存在点、点和点,使得四边形(点 顺时针排列)是正方形,则称点为曲线完美点.那么下列结论中正确的是( ).

A. 曲线上不存在完美点

B. 曲线上只存在一个完美点,其横坐标大于

C. 曲线上只存在一个完美点,其横坐标大于且小于

D. 曲线上存在两个完美点,其横坐标均大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如表:

年份

2011

2012

2013

2014

2015

2016

年份代码

1

2

3

4

5

6

使用率

11

13

16

15

20

21

(1)请根据以上数据,用最小二乘法求水上摩托使用率关于年份代码的线性回归方程,并预测该娱乐场2018年水上摩托的使用率;

(2)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身的发展需要,准备重新购进一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、1.2万元.根据以往经验,每辆水上摩托的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:

已知每辆水上摩托从购入到淘汰平均年收益是0.8万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润收益购车成本)的期望值为参考值,则该娱乐场的负责人应该选购Ⅰ型水上摩托还是Ⅱ型水上摩托?

附:回归直线方程为,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程选讲

在直角坐标系中,曲线C1的参数方程为(a为参数),以原点O为极点,

以x轴正半轴为极轴,建立极坐标系,曲 线C2的极坐标方程为

(1)求曲线C1的普通方程与曲线C2的直角坐标方程.

(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数= .

(1)若函数处取得极值,求的值,并判断处取得极大值还是极小值.

(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

1)求的取值范围;

2)记两个极值点为,且,已知,若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定一个数列{an},在这个数列里,任取m(m≥3mN*)项,并且不改变它们在数列{an}中的先后次序,得到的数列称为数列{an}的一个m阶子数列.已知数列{an}的通项公式为an (nN*a为常数),等差数列a2a3a6是数列{an}的一个3阶子数列

1)求a的值;

2)等差数列b1b2bm{an}的一个m (m≥3mN*) 阶子数列,且b1 (k为常数,kN*k≥2),求证:mk1

3等比数列c1c2cm{an}的一个m (m≥3mN*) 阶子数列

求证:c1c2cm≤2

查看答案和解析>>

同步练习册答案