科目: 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )
A. , , 依次成公比为2的等比数列,且
B. , , 依次成公比为2的等比数列,且
C. , , 依次成公比为的等比数列,且
D. , , 依次成公比为的等比数列,且
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(),.
(1)若,曲线在点处的切线与轴垂直,求的值;
(2)若,试探究函数与的图象在其公共点处是否存在公切线.若存在,研究值的个数;,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如下图,已知点是离心率为的椭圆: 上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合.
(1)求椭圆的方程;
(2)求证:直线, 的斜率之和为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,椭圆的左焦点为,过点的直线交椭圆于,两点,的最大值是,的最小值是,且满足.
(1)求椭圆的离心率;
(2)设线段的中点为,线段的垂直平分线与轴、轴分别交于,两点,是坐标原点,记的面积为,的面积为,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分12分)已知椭圆C: 的离心率为, 是椭圆的两个焦点, 是椭圆上任意一点,且的周长是.
(1)求椭圆C的方程;
(2)设圆T: ,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在轴上移动且时,求EF的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com