科目: 来源: 题型:
【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为
),其中:三棱锥的底面是正三角形(边长为
),四棱锥的底面是有一个角为
的菱形(边长为
),圆锥的体积为
,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(其中
为参数),曲线
,以坐标原点
为极点,以
轴正半轴为极轴建立极坐标系.
(1)求曲线
的普通方程和曲线
的极坐标方程;
(2)若射线
与曲线
,
分别交于
两点,求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)函数
的图象与
的图象无公共点,求实数
的取值范围;
(Ⅱ)是否存在实数
,使得对任意的
,都有函数
的图象在
的图象的下方?若存在,请求出整数
的最大值;若不存在,请说理由.
(参考数据:
,
,
).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点
为圆
的圆心,
是圆上的动点,点
在圆的半径
上,且有点
和
上的点
,满足
,
.
(1)当点
在圆上运动时,求点
的轨迹方程;
(2)若斜率为
的直线
与圆
相切,直线
与(1)中所求点
的轨迹交于不同的两点
,
,
是坐标原点,且
时,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在某校矩形的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在
范围内,规定分数在80以上(含80)的同学获奖,按文理科用分层抽样的放发抽取200人的成绩作为样本,得到成绩的频率分布直方图.
![]()
(Ⅰ)填写下面
的列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”;
(Ⅱ)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为
,求
的分布列及数学期望.
![]()
附表及公式:
,其中![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)若曲线
与曲线
在公共点处有共同的切线,求实数
的值;
(Ⅱ)在(Ⅰ)的条件下,试问函数
是否有零点?如果有,求出该零点;若没有,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆
(
)的左、右焦点分别为
,
,过
作垂直于
轴的直线
与椭圆
在第一象限交于点
,若
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
,
是椭圆
上位于直线
两侧的两点.若直线
过点
,且
,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量
(单位:千万立方米)与年份
(单位:年)之间的关系.并且已知
关于
的线性回归方程是
,试确定
的值,并预测2018年该地区的天然气需求量;
![]()
(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:
类型 |
|
|
|
车辆数目 | 10 | 20 | 30 |
为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“
”,求
的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com