相关习题
 0  260965  260973  260979  260983  260989  260991  260995  261001  261003  261009  261015  261019  261021  261025  261031  261033  261039  261043  261045  261049  261051  261055  261057  261059  261060  261061  261063  261064  261065  261067  261069  261073  261075  261079  261081  261085  261091  261093  261099  261103  261105  261109  261115  261121  261123  261129  261133  261135  261141  261145  261151  261159  266669 

科目: 来源: 题型:

【题目】f(x)ln xg(x)x|x|.

(1)g(x)x=-1处的切线方程;

(2)F(x)x·f(x)g(x),求F(x)的单调区间;

(3)若任意x1x2[1,+)x1>x2,都有m[g(x1)g(x2)]>x1f(x1)x2f(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线Cy24x和直线lx=-1.

(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;

(2)过直线l上任一点P作抛物线的两条切线,切点记为AB,求证:直线AB过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥PABCD中,PA⊥底面ABCD,底面ABCD为梯形,ADBCCDBCAD2ABBC3PA4MAD的中点,NPC上一点,且PC3PN.

(1)求证:MN∥平面PAB

(2)求点M到平面PAN的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.

组别

分组

频数

频率

1

[5060)

8

0.16

2

[6070)

a

3

[7080)

20

0.40

4

[8090)

0.08

5

[90100]

2

b

合计

(1)求出ab的值;

(2)在选取的样本中,从竞赛成绩是80分以上(80)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.

①求所抽取的2名同学中至少有1名同学来自第5组的概率;

②求所抽取的2名同学来自同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)sin ωxcos ωx(ω>0)的最小正周期为π.

(1)求函数yf(x)图象的对称轴方程;

(2)讨论函数f(x)上的单调性.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列{an}满足an22cos2nN*,等差数列{bn}满足a12b1a2b2.

(1)bn

(2)cna2n1b2n1a2nb2n,求cn

(3)求数列{anbn}2n项和S2n.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=sin x,g(x)=mx (m为实数).

(1)求曲线yf(x)在点处的切线方程;

(2)求函数g(x)的单调递减区间;

(3)若m=1,证明:当x>0时,f(x)<g(x)+.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如下图所示.

(Ⅰ)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;

(Ⅱ)若按分层抽样的方法从年龄在以内及以内的市民中随机抽取5人,再从这5人中随机抽取2人进行调研,求抽取的2人中,至多1人年龄在内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】本小题满分12己知函数fx=

1求曲线y=fx在点0f0))处的切线方程;

2求证:当x01时,fx>2

3设实数k使得fx>kx01恒成立,求k的最大值

查看答案和解析>>

科目: 来源: 题型:

【题目】某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1l2,山区边界曲线为C,计划修建的公路为l,如图所示,MNC的两个端点,测得点Ml1l2的距离分别为5千米和40千米,点Nl1l2的距离分别为20千米和2.5千米,以l2l1所在的直线分别为xy轴,建立平面直角坐标系xOy,假设曲线C符合函数y (其中ab为常数)模型.

(1)求ab的值;

(2)设公路l与曲线C相切于P点,P的横坐标为t.

①请写出公路l长度的函数解析式f(t),并写出其定义域;

②当t为何值时,公路l的长度最短?求出最短长度.

查看答案和解析>>

同步练习册答案