科目: 来源: 题型:
【题目】设函数f(x)的定义域为D,如果x∈D,y∈D,使得f(x)=-f(y)成立,则称函数f(x)为“Ω函数”.给出下列四个函数:①y=sin x;②y=2x;③y=
;④f(x)=ln x.则其中“Ω函数”共有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求实数a的取值范围;
(2)若函数y=f(x)的图象关于点
对称,求实数a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为
(t为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cos θ=0.
(1)求直线l与曲线C的普通方程;
(2)已知直线l与曲线C交于A,B两点,设M(2,0),求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
的左、右焦点为F1,F2,设点F1,F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足
,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.
查看答案和解析>>
科目: 来源: 题型:
【题目】设f(x)=ex(ln x-a)(e是自然对数的底数,
e=2.71 828…).
(1)若y=f(x)在x=1处的切线方程为y=2ex+b,求a,b的值.
(2)若函数f(x)在区间
上单调递减,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市拟招商引资兴建一化工园区,新闻媒体对此进行了问卷调查,在所有参与调查的市民中,持“支持”、“保留”和“不支持”态度的人数如表所示:
支持 | 保留 | 不支持 | |
30岁以下 | 900 | 120 | 280 |
30岁以上(含30岁) | 300 | 260 | 140 |
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取部分市民做进一步调研(不同态度的群体中亦按年龄分层抽样),已知从“保留”态度的人中抽取了19人,则在“支持”态度的群体中,年龄在30岁以上的人有多少人被抽取;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取6人做进一步的调研,将此6人看作一个总体,在这6人中任意选取2人,求至少有1人在30岁以上的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=
AD,E,F分别为线段AD,PC的中点.
![]()
(1)求证:AP∥平面BEF;
(2)求证:BE⊥平面PAC.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a,b分别是△ABC内角A,B的对边,且bsin2A=
acos Asin B,函数f(x)=sin Acos2x-sin2
sin 2x,x∈
.
(1)求A;
(2)求函数f(x)的值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】(2017·合肥市质检)已知点F为椭圆E:
(a>b>0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线
与椭圆E有且仅有一个交点M.
(1)求椭圆E的方程;
(2)设直线
与y轴交于P,过点P的直线l与椭圆E交于不同的两点A,B,若λ|PM|2=|PA|·|PB|,求实数λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com