相关习题
 0  261005  261013  261019  261023  261029  261031  261035  261041  261043  261049  261055  261059  261061  261065  261071  261073  261079  261083  261085  261089  261091  261095  261097  261099  261100  261101  261103  261104  261105  261107  261109  261113  261115  261119  261121  261125  261131  261133  261139  261143  261145  261149  261155  261161  261163  261169  261173  261175  261181  261185  261191  261199  266669 

科目: 来源: 题型:

【题目】将边长为的正方形(及其内部)绕旋转一周形成圆柱,如图, 长为 长为,其中在平面的同侧.

(1)求三棱锥的体积;

(2)求异面直线所成的角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于集合,定义了一种运算,使得集合中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素是集合对运算的单位元素.例如: ,运算为普通乘法;存在,使得对任意,都有,所以元素是集合对普通乘法的单位元素.

下面给出三个集合及相应的运算

,运算为普通减法;

{表示阶矩阵, },运算为矩阵加法;

(其中是任意非空集合),运算为求两个集合的交集.

其中对运算有单位元素的集合序号为( )

A. ①② B. ①③ C. ①②③ D. ②③

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中曲线的方程是上的动点满足为极点),点的轨迹为曲线以极点为原点极轴为轴的非负半轴建立平面直角坐标系已知直线的参数方程是,( 为参数).

(Ⅰ)求曲线直角坐标方程与直线的普通方程

(Ⅱ)求点到直线的距离的最大值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 为自然对数的底数).

(Ⅰ)当的最小值

(Ⅱ)若函数恰有两个不同极值点

①求的取值范围

②求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知曲线曲线的左右焦点是 就是的焦点的在第一象限内的公共点且的直线分别与曲线交于点

(Ⅰ)求点的坐标及的方程

(Ⅱ)若面积分别是的取值范围

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直角梯形 分别是边上的点沿折起并连接成如图的多面体折后

(Ⅰ)求证:

(Ⅱ)若折后直线与平面所成角的正弦值是求证平面平面

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市随机抽取一年(365天)内100天的空气质量指数Air Pollution Index)的监测数据,结果统计如下:

大于300

空气质量

轻微污染

轻度污染

中度污染

中度重

污染

重度污染

天数

10

15

20

30

7

6

12

(Ⅰ)若本次抽取的样本数据有30天是在供暖季,其中有7天为重度污染,完成下面列联表并判断能否有的把握认为该市本年空气重度污染与供暖有关

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

(Ⅱ)政府要治理污染,决定对某些企业生产进行管控,当在区间时企业正常生产在区间时对企业限产(即关闭的产能),当在区间时对企业限产300以上时对企业限产企业甲是被管控的企业之一若企业甲正常生产一天可得利润2万元,若以频率当概率,不考虑其他因素:

①在这一年中随意抽取5天,求5天中企业被限产达到或超过的恰为2天的概率;

②求企业甲这一年因限产减少的利润的期望值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知

(1)讨论的单调性;

(2)若存在及唯一正整数,使得,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线与直线垂直,椭圆经过点

(1)求椭圆的标准方程;

(2)过点作椭圆的两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图甲在四边形ABCD 是边长为4的正三角形,把沿AC折起到的位置,使得平面PAC平面ACD如图乙所示分别为棱的中点.

1求证: 平面

2求三棱锥的体积.

查看答案和解析>>

同步练习册答案