科目: 来源: 题型:
【题目】【2018贵州遵义市高三上学期第二次联考】设抛物线
的准线与
轴交于
,抛物线的焦点为
,以
为焦点,离心率
的椭圆与抛物线的一个交点为
;自
引直线交抛物线于
两个不同的点,设
.
(Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)若
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥
,侧面
是边长为2的正三角形,且平面
平面
,底面
是
的菱形,
为棱
上的动点,且
.
(Ⅰ)求证:
;
(Ⅱ)试确定
的值,使得二面角
的平面角余弦值为
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
![]()
以100天记录的各需求量的频率作为各需求量发生的概率.
(1)若花店一天购进17枝玫瑰花,
表示当天的利润(单位:元),求
的分布列及数学期望;
(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
为坐标原点,抛物线
上在第一象限内的点
到焦点的距离为
,曲线
在点
处的切线交
轴于点
,直线
经过点
且垂直于
轴.
(Ⅰ)求
点的坐标;
(Ⅱ)设不经过点
和
的动直线
交曲线
于点
和
,交
于点
,若直线
,
,
的斜率依次成等差数列,试问:
是否过定点?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,平面
平面
,且
,
.四边形
满足
,
,
.
为侧棱
的中点,
为侧棱
上的任意一点.
![]()
(1)若
为
的中点,求证: 面
平面
;
(2)是否存在点
,使得直线
与平面
垂直? 若存在,写出证明过程并求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在
市的
区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记
表示在各区开设分店的个数,
表示这
个分店的年收入之和.
| 2 | 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合
与
的关系,求
关于
的线性回归方程;
(Ⅱ)假设该公司在
区获得的总年利润
(单位:百万元)与
之间的关系为
,请结合(Ⅰ)中的线性回归方程,估算该公司应在
区开设多少个分店,才能使
区平均每个分店的年利润最大?
参考公式:
,
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】狄利克雷函数是高等数学中的一个典型函数,若
,则称
为狄利克雷函数.对于狄利克雷函数
,给出下面4个命题:①对任意
,都有
;②对任意
,都有
;③对任意
,都有
,
;④对任意
,都有
.其中所有真命题的序号是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com