相关习题
 0  261031  261039  261045  261049  261055  261057  261061  261067  261069  261075  261081  261085  261087  261091  261097  261099  261105  261109  261111  261115  261117  261121  261123  261125  261126  261127  261129  261130  261131  261133  261135  261139  261141  261145  261147  261151  261157  261159  261165  261169  261171  261175  261181  261187  261189  261195  261199  261201  261207  261211  261217  261225  266669 

科目: 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆

)求的方程.

)设直线不经过点且与相交于两点,若直线与直线的斜率的和为

证明: 过定点.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,底面是直角梯形, 平面平面

Ⅰ)求证: 平面

Ⅱ)求平面和平面所成二面角(小于)的大小.

Ⅲ)在棱上是否存在点使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在某批次的某种灯泡中,随机地抽取个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.

寿命(天)

频数

频率

合计

Ⅰ)根据频率分布表中的数据,写出 的值.

Ⅱ)某人从灯泡样品中随机地购买了个,求个灯泡中恰有一个是优等品的概率.

Ⅲ)某人从这个批次的灯泡中随机地购买了个进行使用,若以上述频率作为概率,用表示此人所购买的灯泡中次品的个数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线C1y=cosxC2y=sin2x+),则下面结论正确的是(  )

A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax2axxln x,且f(x)≥0.

(1)a

(2)证明:f(x)存在唯一的极大值点x0,且e2<f(x0)<22

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E: 的焦点在x轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA

(1)当t=4,|AM|=|AN|时,求AMN的面积;

(2)当2|AM|=|AN|时,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通项公式;

(2)若T3=21,求S3

查看答案和解析>>

科目: 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

同步练习册答案