相关习题
 0  261061  261069  261075  261079  261085  261087  261091  261097  261099  261105  261111  261115  261117  261121  261127  261129  261135  261139  261141  261145  261147  261151  261153  261155  261156  261157  261159  261160  261161  261163  261165  261169  261171  261175  261177  261181  261187  261189  261195  261199  261201  261205  261211  261217  261219  261225  261229  261231  261237  261241  261247  261255  266669 

科目: 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】我们知道一次函数、二次函数的图像都是连续不断的曲线,事实上,多项式函数的图像都是如此.

1)设,且,若还有,求证:

2)设一个多项式函数有奇次项),求证:总能通过只调整的系数,使得调整后的多项式一定有零点;

3)现有未知数为的多项式方程(其中实数待定),甲、乙两人进行一个游戏:由甲开始交替确定中的一个数(每次只能去确定剩余还未定的数),当甲确定最后一个数后,若方程由实数解,则乙胜,反之甲胜,问:乙有必胜的策略吗?若有,请给出策略并证明,若无,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量a=(-2,1),b=(x,y).

(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b=-1的概率;

(2)若x,y在连续区间[1,6]上取值,求满足a·b<0的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某影院共有1000个座位,票价不分等次,根据该影院的经营经验,当每张票价不超过10元时,票可全部售出,当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院一个合适的票价,符合的基本条件是:

为了方便找零和算账,票价定为1元的整数倍;

影院放映一场电影的成本费为5750元,票房收入必须高于成本支出.

1)设定价为)元,净收入为元,求关于的表达式;

2)每张票价定为多少元时,放映一场的净收入最多?此时放映一场的净收入为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解某冷饮店的经营状况,随机记录了该店月的月营业额(单位:万元)与月份的数据,如下表:

(1)求关于的回归直线方程

(2)若在这样本点中任取两点,求恰有一点在回归直线上的概率.

附:回归直线方程中,

.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数,若函数内有两个极值点,则实数的取值范围是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况某调查机构借助网络进行了问卷调查并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):

(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?(Ⅱ)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

1分别求这5人中经常使用、偶尔或不用共享单车的人数;

2从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式 其中.

参考数据

查看答案和解析>>

科目: 来源: 题型:

【题目】下列关于回归分析的说法中错误的是( )

A. 回归直线一定过样本中心

B. 残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适

C. 两个模型中残差平方和越小的模型拟合的效果越好

D. 甲、乙两个模型的分别约为0.98和0.80,则模型乙的拟合效果更好

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为,直线相切于点.

(1)求椭圆的方程;

(2)若直线与椭圆交于不同的两点,与直线相交于均不重合).证明:为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)求证: 平面

(3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案