科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),它与曲线
C:(y-2)2-x2=1交于A、B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为
,求点P到线段AB中点M的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分13分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的内接等边三角形
的面积为
(其中
为坐标原点).
(1)试求抛物线
的方程;
(2)已知点
两点在抛物线
上,
是以点
为直角顶点的直角三角形.
①求证:直线
恒过定点;
②过点
作直线
的垂线交
于点
,试求点
的轨迹方程,并说明其轨迹是何种曲线.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆C:
的焦距为2,左右焦点分别为
,
,以原点O为圆心,以椭圆C的半短轴长为半径的圆与直线
相切.
Ⅰ
求椭圆C的方程;
Ⅱ
设不过原点的直线l:
与椭圆C交于A,B两点.
若直线
与
的斜率分别为
,
,且
,求证:直线l过定点,并求出该定点的坐标;
若直线l的斜率是直线OA,OB斜率的等比中项,求
面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
:
的离心率
,左顶点为
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
(1)求椭圆
的方程;
(2)已知
为
的中点,是否存在定点
,对于任意的
都有
,若存在,求出点
的
坐标;若不存在说明理由;
(3)若过
点作直线
的平行线交椭圆
于点
,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知有限集合
,定义如下操作过程
:从
中任取两个元素
、
,由
中除了
、以外的元素构成的集合记为
;①若
,则令
;②若
,则
;这样得到新集合
,例如集合
经过一次操作后得到的集合可能是
也可能得到
等,可继续对取定的
实施操作过程
,得到的新集合记作
,……,如此经过
次操作后得到的新集合记作
,设
,对于
,反复进行上述操作过程,当所得集合
只有一个元素时,则所有可能的集合
为______.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分13分) 已知双曲线
的两个焦点为
的曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为
求直线l的方程
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com