科目: 来源: 题型:
【题目】 为向国际化大都市目标迈进,沈阳市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有来沈阳的3名工人相互独立地从这60个项目中任选一个项目参与建设.
(Ⅰ)求这3人选择的项目所属类别互异的概率;
(Ⅱ)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市有户籍的人口共万,其中老人(年龄岁及以上)人数约有万,为了了解老人们的健康状况,政府从老人中随机抽取人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以岁为界限分成两个群体进行统计,样本分布被制作成如下图表:
(1)若从样本中的不能自理的老人中采取分层抽样的方法再抽取人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市岁以上长者占全市户籍人口的百分比;
(3)政府计划为岁及以上长者或生活不能自理的老人每人购买元/年的医疗保险,为其余老人每人购买元/年的医疗保险,不可重复享受,试估计政府执行此计划的年度预算.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求直线的直角坐标方程;
(2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位: ),现将其分成六组为, , , , , 后得到如图所示的频率分布直方图.
(1)某小型轿车途经该路段,其速度在以上的概率是多少?
(2)若对车速在, 两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在内的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理﹑化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知奇函数(实数、为常数),且满足.
(1)求函数的解析式;
(2)试判断函数在区间上的单调性,并用函数单调性定义证明;
(3)当时,函数恒成立,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥中, , , ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
【答案】D
【解析】在三棱锥中,因为, , ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.
点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.
【题型】单选题
【结束】
21
【题目】已知函数,则的大致图象为( )
A. B.
C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】为激发学生学习的兴趣,老师上课时在黑板上写出三个集合: ;然后叫甲、乙、丙三位同学到讲台上,并将“”中的数告诉了他们,要求他们各用一句话来描述,以便同学们能确定该数,以下是甲、乙、丙三位同学的描述:
甲:此数为小于6的正整数;乙:A是B成立的充分不必要条件;
丙:A是C成立的必要不充分条件
若老师评说这三位同学都说得对,则“”中的数为 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com