相关习题
 0  261169  261177  261183  261187  261193  261195  261199  261205  261207  261213  261219  261223  261225  261229  261235  261237  261243  261247  261249  261253  261255  261259  261261  261263  261264  261265  261267  261268  261269  261271  261273  261277  261279  261283  261285  261289  261295  261297  261303  261307  261309  261313  261319  261325  261327  261333  261337  261339  261345  261349  261355  261363  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面. 

(1)证明:平面平面

(2)若为棱的中点,,求四面体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了调查某生产线上质量监督员甲是否在现场对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,1 000件产品中合格品有990件,次品有10件,甲不在现场时,500件产品中有合格品490件,次品有10件.

1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:

合格品数/

次品数/

总数/

甲在现场

990

甲不在现场

10

总数/

2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为甲在不在现场与产品质量有关

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)求证: 平面

(3)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,为棱上的任意一点,分别为所在棱的中点.

(1)证明:平面

(2)若平面,当二面角的平面角为时,求棱的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校进行课题实验,乙班为实验班,甲班为对比班,甲乙两班均有50人,一年后对两班进行测试,成绩如下表

甲班成绩

人数

4

20

15

10

1

乙班成绩

人数

1

11

23

13

2

(1)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果

(2)完成下列列联表,并判断有多大把握认为这两个班在这次测试中成绩的差异与实施课题实验有关。

成绩小于100

成绩不小于100

合计

甲班

50

乙班

50

合计

36

64

100

查看答案和解析>>

科目: 来源: 题型:

【题目】一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)长方形;(3)正方形;(4)正六边形.其中正确的结论是____________.(把你认为正确的序号都填上)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数上的偶函数,上的奇函数,且.

1)求的解析式;

2)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年2月22日,在韩国平昌冬奥会短道速滑男子米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过个直道与弯道的交接口.已知某男子速滑运动员顺利通过每个交接口的概率均为,摔倒的概率均为.假定运动员只有在摔倒或到达终点时才停止滑行,现在用表示该运动员滑行最后一圈时在这一圈内已经顺利通过的交接口数.

(1)求该运动员停止滑行时恰好已顺利通过个交接口的概率;

(2)求的分布列及数学期望.

查看答案和解析>>

同步练习册答案