科目: 来源: 题型:
【题目】下表为
年至
年某百货零售企业的线下销售额(单位:万元),其中年份代码
年份
.
年份代码 |
|
|
|
|
线下销售额 |
|
|
|
|
(1)已知
与
具有线性相关关系,求
关于
的线性回归方程,并预测
年该百货零售企业的线下销售额;
(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了
位男顾客、
位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有
人、女顾客有
人,能否在犯错误的概率不超过
的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?
参考公式及数据:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近13年的宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
![]()
由散点图知,按
建立
关于
的回归方程是合理的.令
,则
,经计算得如下数据:
|
|
|
|
|
|
10.15 | 109.94 | 0.16 | -2.10 | 0.21 | 21.22 |
(1)根据以上信息,建立
关于
的回归方程;
(2)已知这种产品的年利润
与
的关系为
.根据(1)的结果,求当年宣传费
时,年利润的预报值是多少?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】省环保厅对
、
、
三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
|
|
| |
优(个) | 28 |
|
|
良(个) | 32 | 30 |
|
已知在这180个数据中随机抽取一个,恰好抽到记录
城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在
城中应抽取的数据的个数;
(2)已知
,
,求在
城中空气质量为优的天数大于空气质量为良的天数的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某生物兴趣小组对冬季昼夜温差与反季节新品种大豆发芽数之间的关系进行研究,他们分别记录了
月
日至
月
日每天的昼夜温差与实验室每天
颗种子的发芽数,得到以下表格
![]()
该兴趣小组确定的研究方案是:先从这
组数据中选取
组数据,然后用剩下的
组数据求线性回归方程,再用被选取的
组数据进行检验.
(1) 求统计数据中发芽数的平均数与方差;
(2) 若选取的是
月
日与
月
日的两组数据,请根据
月
日至
月
日的数据,求出发芽数
关于温差
的线性回归方程
,若由线性回归方程得到的估计数据与所选取的检验数据的误差不超过
,则认为得到的线性回归方程是可靠的,问得到的线性回归方程是否可靠? 附:线性回归方程
中斜率和截距最小二乘估法计算公式:
, ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.
(Ⅰ)若∠APB=60°,试求点P的坐标;
(Ⅱ)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=
时,求直线CD的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校高三年级50名学生参加数学竞赛,根据他们的成绩绘制了如图所示的频率分布直方图,已知分数在
的矩形面积为
,
![]()
求:
分数在
的学生人数;
这50名学生成绩的中位数
精确到
;
若分数高于60分就能进入复赛,从不能进入复赛的学生中随机抽取两名,求两人来自不同组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
:
,若存在实数
使得一条曲线与直线
有两个不同的交点,且以这两个交点为端点的线段长度恰好等于
,则称此曲线为直线
的“绝对曲线”.下面给出的四条曲线方程:
①
;②
;③
;④
.
其中直线
的“绝对曲线”的条数为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com