精英家教网 > 高中数学 > 题目详情

【题目】已知直线,若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:

;②;③;④.

其中直线的“绝对曲线”的条数为( )

A. B. C. D.

【答案】C

【解析】

y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).

对于①,y=﹣2|x﹣1|图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l绝对曲线”;

对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,

所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|

所以圆(x﹣1)2+(y﹣1)2=1是直线l绝对曲线”;

对于③,将y=ax+1﹣a代入x2+3y2=4,

得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.

x1+x2=, x1x2=

若直线l被椭圆截得的线段长度是|a|

化简得

f(a)=

f(1),f(3)

所以函数f(a)在(1,3)上存在零点,即方程有根.

而直线过椭圆上的定点(1,1),当a(1,3)时满足直线与椭圆相交.

故曲线x2+3y2=4是直线的绝对曲线”.

对于④将y=ax+1﹣a代入.

把直线y=ax+1-a代入y2=4xa2x2+(2a-2a2-4)x+(1-a)2=0,
x1+x2=,x1x2=
若直线l被椭圆截得的弦长是|a|,

a2=(1+a2)[(x1+x22-4x1x2]=(1+a2

化为a6-16a2+16a-16=0,
f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.
∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a(1,2)时,直线满足条件,即此函数的图象是绝对曲线”.
综上可知:能满足题意的曲线有②③④
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中, ,点分别在边上,且 于点.现将沿折起,使得平面平面,得到图2.

(Ⅰ)在图2中,求证:

(Ⅱ)若点是线段上的一动点,问点什么位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,且分别为线段的中点,沿折起,使,得到如下的立体图形.

(1)证明:平面平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间有5名工人其中初级工2人,中级工2人,高级工1现从这5名工人中随机抽取2名.

求被抽取的2名工人都是初级工的概率;

求被抽取的2名工人中没有中级工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2(y2)21,直线l的方程为x2y0,点P在直线l上,过点P作圆M的切线PAPB,切点为AB.

()APB60°,试求点P的坐标;

()若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】省环保厅对三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:

优(个)

28

良(个)

32

30

已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.

(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;

(2)已知 ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且椭圆与圆的4个交点恰为一个正方形的4个顶点.

(1)求椭圆的标准方程;

(2)已知点为椭圆的下顶点, 为椭圆上与不重合的两点,若直线与直线的斜率之和为,试判断是否存在定点,使得直线恒过点,若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

(1)判断函数极值点的个数,并说明理由;

(2)若 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图231所示.

图231

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.

(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;

(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).

查看答案和解析>>

同步练习册答案