【题目】已知直线:,若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:
①;②;③;④.
其中直线的“绝对曲线”的条数为( )
A. B. C. D.
【答案】C
【解析】
由y=ax+1﹣a=a(x﹣1)+1,可知直线l过点A(1,1).
对于①,y=﹣2|x﹣1|,图象是顶点为(1,0)的倒V型,而直线l过顶点A(1,1).所以直线l不会与曲线y=﹣2|x﹣1|有两个交点,不是直线l的“绝对曲线”;
对于②,(x﹣1)2+(y﹣1)2=1是以A为圆心,半径为1的圆,
所以直线l与圆总有两个交点,且距离为直径2,所以存在a=±2,使得圆(x﹣1)2+(y﹣1)2=1与直线l有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于|a|.
所以圆(x﹣1)2+(y﹣1)2=1是直线l的“绝对曲线”;
对于③,将y=ax+1﹣a代入x2+3y2=4,
得(3a2+1)x2+6a(1﹣a)x+3(1﹣a)2﹣4=0.
x1+x2=, x1x2=.
若直线l被椭圆截得的线段长度是|a|,
则
化简得.
令f(a)=.
f(1),f(3).
所以函数f(a)在(1,3)上存在零点,即方程有根.
而直线过椭圆上的定点(1,1),当a∈(1,3)时满足直线与椭圆相交.
故曲线x2+3y2=4是直线的“绝对曲线”.
对于④将y=ax+1﹣a代入.
把直线y=ax+1-a代入y2=4x得a2x2+(2a-2a2-4)x+(1-a)2=0,
∴x1+x2=,x1x2=.
若直线l被椭圆截得的弦长是|a|,
则a2=(1+a2)[(x1+x2)2-4x1x2]=(1+a2)
化为a6-16a2+16a-16=0,
令f(a)=a6-16a2+16a-16,而f(1)=-15<0,f(2)=16>0.
∴函数f(a)在区间(1,2)内有零点,即方程f(a)=0有实数根,当a∈(1,2)时,直线满足条件,即此函数的图象是“绝对曲线”.
综上可知:能满足题意的曲线有②③④.
故选:C.
科目:高中数学 来源: 题型:
【题目】如图1,在矩形ABCD中, ,点分别在边上,且, 交于点.现将沿折起,使得平面平面,得到图2.
(Ⅰ)在图2中,求证: ;
(Ⅱ)若点是线段上的一动点,问点在什么位置时,二面角的余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间有5名工人其中初级工2人,中级工2人,高级工1人现从这5名工人中随机抽取2名.
Ⅰ求被抽取的2名工人都是初级工的概率;
Ⅱ求被抽取的2名工人中没有中级工的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.
(Ⅰ)若∠APB=60°,试求点P的坐标;
(Ⅱ)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
城 | 城 | 城 | |
优(个) | 28 | ||
良(个) | 32 | 30 |
已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;
(2)已知, ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,且椭圆与圆的4个交点恰为一个正方形的4个顶点.
(1)求椭圆的标准方程;
(2)已知点为椭圆的下顶点, 为椭圆上与不重合的两点,若直线与直线的斜率之和为,试判断是否存在定点,使得直线恒过点,若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图231所示.
图231
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com