科目: 来源: 题型:
【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列
满足:
,
,
.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前
项所占的格子的面积之和为
,每段螺旋线与其所在的正方形所围成的扇形面积为
,则下列结论正确的是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】若数列
共有k
项,且同时满足
,
,则称数列
为
数列.
(1)若等比数列
为
数列,求
的值;
(2)已知
为给定的正整数,且
,
①若公差为![]()
的等差数列
是
数列,求公差d;
②若数列
的通项公式为![]()
,其中常数
,判断数列
是否为
数列,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正三棱柱
中,所有棱长都等于
.
![]()
(1)当点
是
的中点时,
①求异面直线
和
所成角的余弦值;
②求二面角
的正弦值;
(2)当点
在线段
上(包括两个端点)运动时,求直线
与平面
所成角的正弦值的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】2022年第24届冬奥会将在北京举行。为了推动我国冰雪运动的发展,京西某区兴建了“腾越”冰雪运动基地。通过对来“腾越”参加冰雪运动的100员运动员随机抽样调查,他们的身份分布如下: 注:将表中频率视为概率。
身份 | 小学生 | 初中生 | 高中生 | 大学生 | 职工 | 合计 |
人数 | 40 | 20 | 10 | 20 | 10 | 100 |
对10名高中生又进行了详细分类如下表:
年级 | 高一 | 高二 | 高三 | 合计 |
人数 | 4 | 4 | 2 | 10 |
(1)求来“腾越”参加冰雪运动的人员中高中生的概率;
(2)根据统计,春节当天来“腾越”参加冰雪运动的人员中,小学生是340人,估计高中生是多少人?
(3)在上表10名高中生中,从高二,高三6名学生中随机选出2人进行情况调查,至少有一名高三学生的概率是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,岛
、
相距
海里.上午9点整有一客轮在岛
的北偏西
且距岛
海里的
处,沿直线方向匀速开往岛
,在岛
停留
分钟后前往
市.上午
测得客轮位于岛
的北偏西
且距岛
海里的
处,此时小张从岛
乘坐速度为
海里/小时的小艇沿直线方向前往
岛换乘客轮去
市.
![]()
(Ⅰ)若
,问小张能否乘上这班客轮?
(Ⅱ)现测得
,
.已知速度为
海里/小时(
)的小艇每小时的总费用为(
)元,若小张由岛
直接乘小艇去
市,则至少需要多少费用?
查看答案和解析>>
科目: 来源: 题型:
【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标。分值权重表如下:
总分 | 技术 | 商务 | 报价 |
100% | 50% | 10% | 40% |
技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的。报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分。若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分。在某次招标中,若基准价为1000(万元)。甲、乙两公司综合得分如下表:
公司 | 技术 | 商务 | 报价 |
甲 | 80分 | 90分 |
|
乙 | 70分 | 100分 |
|
甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是
A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com