科目: 来源: 题型:
【题目】已知点P(x0,y0)(x0≠)在椭圆C:(a>b>0)上,若点M为椭圆C的右顶点,且PO⊥PM (O为坐标原点),则椭圆C的离心率e的取值范围是
A. (0,) B. (0,1) C. (,1) D. (0,)
查看答案和解析>>
科目: 来源: 题型:
【题目】现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核: 分制),用相关的特征量表示;医护专业知识考核分数(试卷考试: 分制),用相关的特征量表示,数据如下表:
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
98 | 88 | 96 | 91 | 90 | 92 | 96 | |
9.9 | 8.6 | 9.5 | 9.0 | 9.1 | 9.2 | 9.8 |
(1)求关于的线性回归方程(计算结果精确到);
(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为分时,他的关爱患者考核分数(精确到);
(3)现要从医护专业知识考核分数分以下的医护人员中选派人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在分以下的概率.
附:回归方程中斜率和截距的最小二乘法估计公式分别为, .
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用
A.一次函数B.二次函数
C.指数型函数D.对数型函数
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列的前项和,
(1)求数列的通项公式;
(2)令,记数列前n项和为,求;
(3)利用第二问结果,设是整数,问是否存在正整数n,使等式成立?若存在,求出和相应的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(I)求圆的直角坐标方程;
(II)若是直线与圆面的公共点,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是( )
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的20%
C.互联网行业中从事运营岗位的人数90后比80后多
D.互联网行业中从事运营岗位的人数90后比80前多
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是某市环保局连续30天对空气质量指数的监测数据:
61 76 70 56 81 91 55 91 75 81
88 67 101 103 57 91 77 86 81 83
82 82 64 79 86 85 75 71 49 45
(1)完成下面的频率分布表;
(2)完成下面的频率分布直方图,并写出频率分布直方图中的值;
(3)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间内的概率.
分组 | 频数 | 频率 |
[41,51) | 2 | |
[51,61) | 3 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | ||
[91,101) | 3 | |
[101,111) |
查看答案和解析>>
科目: 来源: 题型:
【题目】一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表:
温度x/℃ | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵个数y/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
(I)根据散点图判断,与哪一个适宜作为产卵数关于温度的回归方程类型(给出判断即可,不必说明理由);
(II)根据(I)的判断结果及表中数据,建立关于的回归方程;
(Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).
附:可能用到的公式及数据表中(表中 , = , = , = )
27.430 | 3.612 | 81.290 | 147.700 | 2763.764 | 705.592 | 40.180 |
对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:,
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是我国2012年至2018年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2012~2018.
(1)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)建立关于的回归方程(系数精确到0.01),预测2020年我国生活垃圾无害化处理量.
参考数据:,,,.
参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com