相关习题
 0  262080  262088  262094  262098  262104  262106  262110  262116  262118  262124  262130  262134  262136  262140  262146  262148  262154  262158  262160  262164  262166  262170  262172  262174  262175  262176  262178  262179  262180  262182  262184  262188  262190  262194  262196  262200  262206  262208  262214  262218  262220  262224  262230  262236  262238  262244  262248  262250  262256  262260  262266  262274  266669 

科目: 来源: 题型:

【题目】某车间20名工人年龄数据如下表:

年龄(岁)

19

24

26

30

34

35

40

合计

工人数(人)

1

3

3

5

4

3

1

20

(1)求这20名工人年龄的众数与平均数;

(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;

(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数对任意的实数m,n都有,且当,.

(1)

(2)求证:R上为增函数;

(3),且关于x的不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1) 判断的奇偶性并证明;

(2)

①判断的单调性(不必说明理由);

②是否存在,使得在区间的值域为?若存在,求出此时的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】有下列四个命题

①“若,则互为相反数”的逆命题;

②“全等三角形的面积相等”的否命题;

③“若,则有实根”的逆否命题;

④“不等边三角形的三个内角相等”的逆命题.

其中真命题为_______________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知指数函数满足:,定义域为的函数是奇函数.

(1)的值;

(2)判断函数的单调性并用定义加以证明;

(3)若对任意的 ,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知随机变量X服从正态分布Nμσ2),且PμXμ)=0.954 4PμσXμσ)=0.682 6.μ4σ1,则P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6

查看答案和解析>>

科目: 来源: 题型:

【题目】我们可以把看作每天的"进步率都是1%,一年后是;而把看作每天的落后率都是1%,一年后是.利用计算工具计算并回答下列问题:

1)一年后进步的是落后的多少倍?

2)大约经过多少天后进步的分别是落后10倍、100倍、1000倍?

查看答案和解析>>

科目: 来源: 题型:

【题目】随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式。最新调查表明,人们对于投资理财的兴趣逐步提高。某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下:

①投资产品的收益与投资额的算术平方根成正比;

②投资产品的收益与投资额成正比.

公司提供了投资1万元时两种产品的收益,分别是0.4万元和0.2万元。

(1) 分别求出产品的收益产品的收益与投资额的函数关系式;

(2) 假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的定义域为,对于任意实数,都有,当时,.

1)求的值;

2)证明:当时,.

3)证明:上单调递减.

4)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】汕头某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配,每辆甲型货车的运输费用是400元,可装空调20台,每辆乙型货车的运输费用是300元,可装空调10台,若每辆车至多运一次,则企业所花的最少运费为(

A. 2000B. 2200C. 2400D. 2800

查看答案和解析>>

同步练习册答案