相关习题
 0  262102  262110  262116  262120  262126  262128  262132  262138  262140  262146  262152  262156  262158  262162  262168  262170  262176  262180  262182  262186  262188  262192  262194  262196  262197  262198  262200  262201  262202  262204  262206  262210  262212  262216  262218  262222  262228  262230  262236  262240  262242  262246  262252  262258  262260  262266  262270  262272  262278  262282  262288  262296  266669 

科目: 来源: 题型:

【题目】(1)人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数有多少种?

(2)有个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?

(3)现有个保送上大学的名额,分配给所学校,每校至少有一个名额,问:名额分配的方法共有多少种?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥PABCD中,侧面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M为PC的中点.

(1)求证:PC⊥AD.

(2)在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D是B1C1的中点.证明:A1D⊥平面A1BC;

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数fx),若fx)的图象上存在关于原点对称的点,则称fx)为定义域上的伪奇函数

1)若fx)=ln2x+1+m是定义在区间[11]上的伪奇函数,求实数m的取值范围;

2)试讨论fx)=4xm2x+2+4m23R上是否为伪奇函数?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地有一企业2007年建厂并开始投资生产,年份代号为7,2008年年份代号为8,依次类推.经连续统计9年的收入情况如下表(经数据分析可用线性回归模型拟合的关系):

年份代号(

7

8

9

10

11

12

13

14

15

当年收入(千万元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求关于的线性回归方程

(Ⅱ)试预测2020年该企业的收入.

(参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图: PA⊥平面ABC,∠ACB=90°且PA=AC=BC=,则异面直线PB与AC所成角的正切值等于________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在正方体ABCDA1B1C1D1中,M,N分别是棱AB,CC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:

①平面MB1P⊥ND1

②平面MB1P⊥平面ND1A1

③△MB1P在底面ABCD上的射影图形的面积为定值;

④△MB1P在侧面DD1C1C上的射影图形是三角形.

其中正确的命题序号是(  )

A. B. ②③

C. ①③D. ②④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,平面,且是边长为2的等边三角形,

(1)若是线段的中点,证明:直线

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线:的焦点为,准线为轴的交点为,点在抛物线上,过点于点,如图1.已知,且四边形的面积为.

(1)求抛物线的方程;

(2)若正方形的三个顶点都在抛物线上(如图2),求正方形面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两所学校进行同一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:

班级与成绩列联表

优秀

不优秀

总计

甲队

80

40

120

乙队

240

200

240

合计

320

240

560

(1)能否在犯错误的概率不超过0.025的前提下认为成绩与学校有关系;

(2)采用分层抽样的方法在两所学校成绩优秀的320名学生中抽取16名同学.现从这16名同学中随机抽取3名运同学作为成绩优秀学生代表介绍学习经验,记这3名同学来自甲学校的人数为,求的分布列与数学期望.附:

参考数据:

,其中.

查看答案和解析>>

同步练习册答案