科目: 来源: 题型:
【题目】
四名工人一天中生产零件的情况如图所示,每个点的横、纵坐标分别表示该工人一天中生产
的Ⅰ型、Ⅱ型零件数,有下列说法:
四个工人中,
的日生产零件总数最大
②
日生产零件总数之和小于
日生产零件总数之和
③
日生产Ⅰ型零件总数之和小于Ⅱ型零件总数之和
④
日生产Ⅰ型零件总数之和小于Ⅱ型零件总数之和
则正确的说法有__________(写出所有正确说法的序号)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在棱长为1正方体
中,点
,
分别为边
,
的中点,将
沿
所在的直线进行翻折,将
沿
所在直线进行翻折,在翻折的过程中,下列说法错误的是( )
![]()
A. 无论旋转到什么位置,
、
两点都不可能重合
B. 存在某个位置,使得直线
与直线
所成的角为![]()
C. 存在某个位置,使得直线
与直线
所成的角为![]()
D. 存在某个位置,使得直线
与直线
所成的角为![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是矩形,
平面
,
,点
、
分别在线段
、
上,且
,其中
,连接
,延长
与
的延长线交于点
,连接
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若
时,求二面角
的正弦值;
(Ⅲ)若直线
与平面
所成角的正弦值为
时,求
值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
,且
).
(Ⅰ)求函数
的单调区间;
(Ⅱ)求函数
在
上的最大值.
【答案】(Ⅰ)
的单调增区间为
,单调减区间为
.(Ⅱ)当
时,
;当
时,
.
【解析】【试题分析】(I)利用
的二阶导数来研究求得函数
的单调区间.(II) 由(Ⅰ)得
在
上单调递减,在
上单调递增,由此可知
.利用导数和对
分类讨论求得函数在
不同取值时的最大值.
【试题解析】
(Ⅰ)
,
设
,则
.
∵
,
,∴
在
上单调递增,
从而得
在
上单调递增,又∵
,
∴当
时,
,当
时,
,
因此,
的单调增区间为
,单调减区间为
.
(Ⅱ)由(Ⅰ)得
在
上单调递减,在
上单调递增,
由此可知
.
∵
,
,
∴
.
设
,
则
.
∵当
时,
,∴
在
上单调递增.
又∵
,∴当
时,
;当
时,
.
①当
时,
,即
,这时,
;
②当
时,
,即
,这时,
.
综上,
在
上的最大值为:当
时,
;
当
时,
.
[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与
轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
【题型】解答题
【结束】
22
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的普通方程为
. 在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(Ⅰ) 写出圆
的参数方程和直线
的直角坐标方程;
( Ⅱ ) 设直线
与
轴和
轴的交点分别为
,
为圆
上的任意一点,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某帆船中心比赛场馆区的海面上每天海浪高度y(米)可看作时间
(单位:小时)的函数,记作
,经过长期观测,
的曲线可近似地看成是函数
,下列是某日各时的浪高数据.
t/小时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 |
| 1 |
| 1 |
| 1 |
| 1 |
|
(1)根据以上数据,求出
的解析式;
(2)为保证安全比赛时的浪高不能高于
米,则在一天中的哪些时间可以进行比赛.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com