相关习题
 0  262479  262487  262493  262497  262503  262505  262509  262515  262517  262523  262529  262533  262535  262539  262545  262547  262553  262557  262559  262563  262565  262569  262571  262573  262574  262575  262577  262578  262579  262581  262583  262587  262589  262593  262595  262599  262605  262607  262613  262617  262619  262623  262629  262635  262637  262643  262647  262649  262655  262659  262665  262673  266669 

科目: 来源: 题型:

【题目】对于函数,若存在实数满足,且,则称的一个.

(1)证明:函数不存在点;

(2)若函数存在,求的范围;

(3)已知函数,证明:存在正实数,对于区间内任意一个皆是函数.

查看答案和解析>>

科目: 来源: 题型:

【题目】王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个城市中有超过的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:

年份x

2016

2017

2018

2019

包装垃圾y(万吨)

4

6

9

13.5

1)有下列函数模型:①;②;③.试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y(万吨)与年份x的函数关系,并直接写出所选函数模型解析式;

2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】某商家通过市场调研,发现某商品的销售价格y(元/件)和销售量x(件)有关,其关系可用图中的折线段表示(不包含端点A.

1)把y表示成x的函数;

2)若该商品进货价格为12/件,则商家卖出多少件时可以获得最大利润?最大利润为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目: 来源: 题型:

【题目】一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解学生对食堂用餐的满意度,从全校在食堂用餐的3000名学生中,随机抽取100名学生对食堂用餐的满意度进行评分.根据学生对食堂用餐满意度的评分,得到如图所示的频率分布直方图,

1)求频率分布直方图中a的值及该样本的中位数

2)规定:学生对食堂用餐满意度的评分不高于80分为不满意,试估计该校在食堂用餐的3000名学生中不满意的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】规定:在桌面上,用母球击打目标球,使目标球运动,球的位置是指球心的位置我们说球 A 是指该球的球心点 A.两球碰撞后,目标球在两球的球心所确定的直线上运动,目标球的运动方向是指目标球被母球击打时,母球球心所指向目标球球心的方向.所有的球都简化为平面上半径为 1 的圆,且母球与目标球有公共点时,目标球就开始运动,在桌面上建立平面直角坐标系,解决下列问题:

(1) 如图,设母球 A 的位置为 (0, 0),目标球 B 的位置为 (4, 0),要使目标球 B C(8, -4) 处运动,求母球 A 球心运动的直线方程;

(2)如图,若母球 A 的位置为 (0, -2),目标球 B 的位置为 (4, 0),能否让母球 A 击打目标 B 球后,使目标 B 球向 (8,-4) 处运动?

(3) A 的位置为 (0,a) 时,使得母球 A 击打目标球 B 时,目标球 B(4, 0) 运动方向可以碰到目标球 C(7,-5),求 a 的最小值(只需要写出结果即可)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 C:的离心率为,以短轴为直径的圆被直线 x+y-1 = 0 截得的弦长为

(1) 求椭圆 C 的方程;

(2) A, B 分别为椭圆的左、右顶点, D 为椭圆右准线 l x 轴的交点, E l上的另一个点,直线 EB 与椭圆交于另一点F,是否存在点 E,使 R)? 若存在,求出点 E 的坐标;若不存在,请说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。

(1) ,求 tanθ的值;

(2) ,且 θ (0,),求 θ的值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,点.

1)求抛物线的顶点坐标;

2)若抛物线轴的交点为,连接,并延长交抛物线于点,求证:

3)将抛物线作适当的平移,得抛物线,若时,恒成立,求得最大值.

查看答案和解析>>

同步练习册答案