科目: 来源: 题型:
【题目】已知真命题:“函数
的图象关于点
成中心对称图形”的等价条件为“函数
是奇函数”.
(1)将函数
的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数
图象对称中心的坐标;
(2)已知命题:“函数
的图象关于某直线成轴对称图象”的等价条件为“存在实数a和b,使得函数
是偶函数”.断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,圆
:
经过伸缩变换
,后得到曲线
以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为![]()
求曲线
的直角坐标方程及直线l的直角坐标方程;
在
上求一点M,使点M到直线l的距离最小,并求出最小距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请
名同学,每人随机写下一个都小于1的正实数对
;再统计两数能与1构成钝角三角形三边的数对
的个数
;最后再根据统计数
来估计
的值.假如统计结果是
,那么可以估计
( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】给定
,
,
,
所对的边分别是
,
,
,在
所在平面作直线
与
的某两边相交,沿
将
折成一个空间图形,将由
分成的小三角形的不在
上的顶点与另一部分的顶点连接,形成一个三棱锥或四棱锥。问:
(1)当
时,
如何作,并折成何种锥体,才能使所得锥体体积最大?(需详证)
(2)当
时,
如何作,并折成何种锥体,才能使所得锥体体积最大?(叙述结果,不要证明)
查看答案和解析>>
科目: 来源: 题型:
【题目】为了推进课堂改革,提高课堂效率,银川一中引进了平板教学,开始推进“智慧课堂”改革.学校教务处为了了解我校高二年级同学平板使用情况,从高二年级923名同学中抽取50名同学进行调查.先用简单随机抽样从923人中剔除23人,剩下的900人再按系统抽样方法抽取50人,则在这923人中,每个人被抽取的可能性 ( )
A.都相等,且为
B.不全相等C.都相等,且为
D.都不相等
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥
中,
是正三角形,四边形ABCD是矩形,且平面
平面
.
(1)若点E是PC的中点,求证:
平面BDE;
(2)若点F在线段PA上,且
,当三棱锥
的体积为
时,求实数
的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若
=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com