相关习题
 0  262605  262613  262619  262623  262629  262631  262635  262641  262643  262649  262655  262659  262661  262665  262671  262673  262679  262683  262685  262689  262691  262695  262697  262699  262700  262701  262703  262704  262705  262707  262709  262713  262715  262719  262721  262725  262731  262733  262739  262743  262745  262749  262755  262761  262763  262769  262773  262775  262781  262785  262791  262799  266669 

科目: 来源: 题型:

【题目】已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.

1)求摸球三次得分为5的概率;

2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表

省数学竞赛一等奖

自主招生通过

高考达重点线

高考达该校分数线

0.5

0.6

0.9

0.7

若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)

(Ⅰ)求该学生参加自主招生考试的概率;

(Ⅱ)求该学生参加考试的次数的分布列及数学期望;

(Ⅲ)求该学生被该校录取的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:

(年)

2

3

4

5

6

(万元)

1

2.5

3

4

4.5

参考公式:.

(1)若知道呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?

查看答案和解析>>

科目: 来源: 题型:

【题目】如果函数的定义域为,对于定义域内的任意存在实数使得成立,则称此函数具有“性质”.

1)判断函数是否具有“性质”,若具有“性质”,写出所有的值;若不具有“性质”,请说明理由.

2)设函数具有“性质”,且当时,,求当时函数的解析式;若交点个数为1001个,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,,底面为直角梯形,分别为中点,且.

(1)平面

(2)若为线段上一点,且平面,求的值;

(3)求四棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】为庆祝国庆节,某中学团委组织了歌颂祖国,爱我中华知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[4050)[5060)[90100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:

1)求第四组的频率,并补全这个频率分布直方图;

2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆经过点离心率为. 

(1)求椭圆的标准方程;

(2)过坐标原点作直线交椭圆两点,过点的平行线交椭圆两点.

①是否存在常数满足?若存在,求出这个常数;若不存在,请说明理由;

②若的面积为的面积为,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,底面为正三角形,侧棱垂直于底面,.若是棱上的点,且,则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:

表一:男生

男生

等级

优秀

合格

尚待改进

频数

15

5

表二:女生

女生

等级

优秀

合格

尚待改进

频数

15

3

(1)求,的值;

(2)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;

(3)由表中统计数据填写列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

男生

女生

总计

优秀

非优秀

总计

45

参考公式:,其中.

参考数据:

0.01

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案