相关习题
 0  262647  262655  262661  262665  262671  262673  262677  262683  262685  262691  262697  262701  262703  262707  262713  262715  262721  262725  262727  262731  262733  262737  262739  262741  262742  262743  262745  262746  262747  262749  262751  262755  262757  262761  262763  262767  262773  262775  262781  262785  262787  262791  262797  262803  262805  262811  262815  262817  262823  262827  262833  262841  266669 

科目: 来源: 题型:

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]频数分别为8,2.

(1)求样本容量和频率分布直方图中的的值;

(2)估计本次竞赛学生成绩的中位数;

(3)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生,求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列的前n项和为,nN*).

1)证明数列是等比数列,求出数列的通项公式;

2)设,求数列的前n项和

3)数列中是否存在三项,它们可以构成等差数列?若存在,求出一组符合条件的项;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数,若在定义域存在实数,满足,则称局部奇函数”.

1)已知二次函数(),试判断是否为局部奇函数”?并说明理由;

2)设是定义在上的局部奇函数,求实数的取值范围;

3)若 为其定义域上的局部奇函数,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业生产某种商品吨,此时所需生产费用为万元,当出售这种商品时,每吨价格为万元,这里为常数,.

1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?

2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为迎接2018年省运会,宁德市某体育馆需要重新铺设塑胶跑道.已知每毫米厚的跑道的铺设成本为10万元,跑道平均每年的维护费C(单位:万元)与跑道厚度x(单位:毫米)的关系为Cx=x[1015].若跑道厚度为10毫米,则平均每年的维护费需要9万元.设总费用fx)为跑道铺设费用与10年维护费之和.

(1)求k的值与总费用fx)的表达式;

(2)塑胶跑道铺设多厚时,总费用fx)最小,并求最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB分别是椭圆的左、右端点,F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PAPF.

1P的坐标;

2M是椭圆长轴AB上的一点,M到直线AP的距离等于MB,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市组织高三全体学生参加计算机操作比赛,等级分为110分,随机调阅了A、B两所学校各60名学生的成绩,得到样本数据如下:

(1)计算两校样本数据的均值和方差,并根据所得数据进行比较.

(2)A校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知px2-7x+100qx2-4mx+3m20,其中m0

1)若m=3pq都是真命题,求x的取值范围;

2)若pq的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于函数,有下列四个命题:①的值域是;②是奇函数;③上单调递增;④方程总有四个不同的解;其中正确的是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系 中,椭圆 的中心为坐标原点,左焦点为F1(﹣1,0),离心率

(1)求椭圆G 的标准方程;

(2)已知直线 与椭圆 交于 两点,直线 与椭圆 交于 两点,且 ,如图所示.

①证明:

②求四边形 的面积 的最大值.

查看答案和解析>>

同步练习册答案