科目: 来源: 题型:
【题目】已知函数f(x)=cosx(acosx﹣sinx)
(a∈R),且f (
)
.
(1)求a的值;
(2)求f(x)的单调递增区间;
(3)求f(x)在区间[0,
]上的最小值及对应的x的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设
为三次函数,且其图象关于原点对称,当
时,
的极小值为-1,则
(1)函数的解析式
__________;
(2)函数
的单调递增区间为___________。
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分14分)
已知椭圆C:
过点
,且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)
是椭圆C的两个焦点,⊙O是以F1F2为直径的圆,直线l: y=kx+m与⊙O相切,并与椭圆C交于不同的两点A、B,若
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,任取
,记函数
在区间
上的最大值为
最小值为
记
. 则关于函数
有如下结论:
①函数
为偶函数;
②函数
的值域为
;
③函数
的周期为2;
④函数
的单调增区间为
.
其中正确的结论有____________.(填上所有正确的结论序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】过点
的直线
与中心在原点,焦点在
轴上且离心率为
的椭圆
相交于
、
两点,直线
过线段
的中点,同时椭圆
上存在一点与右焦点关于直线
对称.
(1)求直线
的方程;
(2)求椭圆
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,近日我渔船编队在岛
周围海域作业,在岛
的南偏西20°方向有一个海面观测站
,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与
相距31海里的
处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛
直线航行以保护我渔船编队,30分钟后到达
处,此时观测站测得
间的距离为21海里.
![]()
(Ⅰ)求
的值;
(Ⅱ)试问海警船再向前航行多少分钟方可到岛
?
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程与曲线
直角坐标方程;
(2)设
为曲线
上的动点,求点
到
上点的距离的最小值,并求此时点
的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.
![]()
(1)求证:AE⊥B1C;
(2)若G为C1C中点,求二面角C-AG-E的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com