精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线直角坐标方程;

(2)设为曲线上的动点,求点上点的距离的最小值,并求此时点的坐标.

【答案】(1);(2)的最小值为,此时点P的坐标为

【解析】

(1)由曲线,两式两边平方相加,即可得到曲线的普通方程,由极坐标和直角坐标的互化公式,即可得到曲线的直角坐标方程.

(2)由(1),设椭圆上的点到直线的距离,转化为三角函数,利用三角函数的图象与性质,即可求解。

(1)由曲线,

两式两边平方相加得,

即曲线的普通方程为

由曲线得:,

,所以,

即曲线的直角坐标方程为.

(2)由(1)知椭圆与直线无公共点,

依题意有椭圆上的点到直线的距离为

,

所以当时,取得最小值,

此时,点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求的极值;

(Ⅱ)若在区间恒成立,求的取值范围;

(Ⅲ)判断函数的零点个数.(直接写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是( )

A. 乙有四场比赛获得第三名

B. 每场比赛第一名得分

C. 甲可能有一场比赛获得第二名

D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求多面体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x,且此函数的图象过点(15).

1)求实数m的值并判断fx)的奇偶性;

2)判断函数fx)在[2,+)上的单调性,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为3的正方体中,

求两条异面直线所成角的余弦值;

求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与半圆弧所在平面垂直,上异于的点

(1)证明:平面平面

(2)在线段上是否存在点,使得平面?说明理由

查看答案和解析>>

同步练习册答案