科目: 来源: 题型:
【题目】已知曲线
的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
(
为参数).
(Ⅰ)将曲线
的极坐标方程化为直角坐标方程;
(Ⅱ)若直线
与曲线
相交于
,
两点,且
,求直线
的倾斜角
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的一个焦点
,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线
平行于直线
(
坐标原点),且与椭圆
交于
,
两个不同的点,若
为钝角,求直线
在
轴上的截距
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
的一个最高点为
,与点
相邻一个最低点为
,直线
与
轴的交点为
.
(1)求函数
的解析式;
(2)求函数
的单调增区间;
(3)若
时,函数
恰有一个零点,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列四个命题:
①经过定点
的直线都可以用方程
表示;
②经过定点
的直线都可以用方程
表示;
③不经过原点的直线都可以用方程
表示;
④经过任意两个不同的点
、
的直线都可以用方程
表示,
其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为
,且经过点M(1,
),过点P(2,1)的直线l与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,满足
?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com